/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "test/av1_convolve_2d_test_util.h" #include "aom_ports/aom_timer.h" #include "av1/common/common_data.h" #include "av1/common/convolve.h" using ::testing::make_tuple; using ::testing::tuple; namespace libaom_test { const int kMaxSize = 128 + 32; // padding namespace AV1Convolve2D { ::testing::internal::ParamGenerator BuildParams( convolve_2d_func filter, int has_subx, int has_suby) { return ::testing::Combine(::testing::Values(filter), ::testing::Values(has_subx), ::testing::Values(has_suby), ::testing::Range(BLOCK_4X4, BLOCK_SIZES_ALL)); } AV1Convolve2DSrTest::~AV1Convolve2DSrTest() {} void AV1Convolve2DSrTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1Convolve2DSrTest::TearDown() { libaom_test::ClearSystemState(); } void AV1Convolve2DSrTest::RunCheckOutput(convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int has_subx = GET_PARAM(1); const int has_suby = GET_PARAM(2); const int block_idx = GET_PARAM(3); int hfilter, vfilter, subx, suby; uint8_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, uint8_t, output[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint8_t, output2[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); for (int i = 0; i < MAX_SB_SQUARE; ++i) output[i] = output2[i] = rnd_.Rand31(); // Make sure that sizes 2xN and Nx2 are also tested for chroma. const int num_sizes = (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 : 1; for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma const int out_w = block_size_wide[block_idx] >> shift; const int out_h = block_size_high[block_idx] >> shift; for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); for (int do_average = 0; do_average < 1; ++do_average) { ConvolveParams conv_params1 = get_conv_params_no_round(do_average, 0, NULL, 0, 0, 8); ConvolveParams conv_params2 = get_conv_params_no_round(do_average, 0, NULL, 0, 0, 8); const int subx_range = has_subx ? 16 : 1; const int suby_range = has_suby ? 16 : 1; for (subx = 0; subx < subx_range; ++subx) { for (suby = 0; suby < suby_range; ++suby) { // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_convolve_2d_sr_c(input + offset_r * w + offset_c, w, output, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params1); test_impl(input + offset_r * w + offset_c, w, output2, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2); if (memcmp(output, output2, sizeof(output))) { for (int i = 0; i < MAX_SB_SIZE; ++i) { for (int j = 0; j < MAX_SB_SIZE; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output[idx], output2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } } } } } } } } } void AV1Convolve2DSrTest::RunSpeedTest(convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int has_subx = GET_PARAM(1); const int has_suby = GET_PARAM(2); const int block_idx = GET_PARAM(3); uint8_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, uint8_t, output[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); int hfilter = EIGHTTAP_REGULAR, vfilter = EIGHTTAP_REGULAR; int subx = 0, suby = 0; const int do_average = 0; ConvolveParams conv_params2 = get_conv_params_no_round(do_average, 0, NULL, 0, 0, 8); // Make sure that sizes 2xN and Nx2 are also tested for chroma. const int num_sizes = (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 : 1; for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma const int out_w = block_size_wide[block_idx] >> shift; const int out_h = block_size_high[block_idx] >> shift; const int num_loops = 1000000000 / (out_w + out_h); const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) test_impl(input, w, output, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("%d,%d convolve %3dx%-3d: %7.2f us\n", has_subx, has_suby, out_w, out_h, 1000.0 * elapsed_time / num_loops); } } AV1JntConvolve2DTest::~AV1JntConvolve2DTest() {} void AV1JntConvolve2DTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1JntConvolve2DTest::TearDown() { libaom_test::ClearSystemState(); } void AV1JntConvolve2DTest::RunCheckOutput(convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int has_subx = GET_PARAM(1); const int has_suby = GET_PARAM(2); const int block_idx = GET_PARAM(3); int hfilter, vfilter, subx, suby; uint8_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, CONV_BUF_TYPE, output1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, CONV_BUF_TYPE, output2[MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, output8_1[MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, output8_2[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); for (int i = 0; i < MAX_SB_SQUARE; ++i) { output1[i] = output2[i] = rnd_.Rand16(); output8_1[i] = output8_2[i] = rnd_.Rand8(); } const int out_w = block_size_wide[block_idx]; const int out_h = block_size_high[block_idx]; for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); for (int do_average = 0; do_average <= 1; ++do_average) { ConvolveParams conv_params1 = get_conv_params_no_round(do_average, 0, output1, MAX_SB_SIZE, 1, 8); ConvolveParams conv_params2 = get_conv_params_no_round(do_average, 0, output2, MAX_SB_SIZE, 1, 8); // Test special case where jnt_comp_avg is not used conv_params1.use_jnt_comp_avg = 0; conv_params2.use_jnt_comp_avg = 0; const int subx_range = has_subx ? 16 : 1; const int suby_range = has_suby ? 16 : 1; for (subx = 0; subx < subx_range; ++subx) { for (suby = 0; suby < suby_range; ++suby) { // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_jnt_convolve_2d_c(input + offset_r * w + offset_c, w, output8_1, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params1); test_impl(input + offset_r * w + offset_c, w, output8_2, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2); for (int i = 0; i < out_h; ++i) { for (int j = 0; j < out_w; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output1[idx], output2[idx]) << "Mismatch at unit tests for av1_jnt_convolve_2d\n" << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } if (memcmp(output8_1, output8_2, sizeof(output8_1))) { for (int i = 0; i < MAX_SB_SIZE; ++i) { for (int j = 0; j < MAX_SB_SIZE; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output8_1[idx], output8_2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } } } } // Test different combination of fwd and bck offset weights for (int k = 0; k < 2; ++k) { for (int l = 0; l < 4; ++l) { conv_params1.use_jnt_comp_avg = 1; conv_params2.use_jnt_comp_avg = 1; conv_params1.fwd_offset = quant_dist_lookup_table[k][l][0]; conv_params1.bck_offset = quant_dist_lookup_table[k][l][1]; conv_params2.fwd_offset = quant_dist_lookup_table[k][l][0]; conv_params2.bck_offset = quant_dist_lookup_table[k][l][1]; for (subx = 0; subx < subx_range; ++subx) { for (suby = 0; suby < suby_range; ++suby) { // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_jnt_convolve_2d_c(input + offset_r * w + offset_c, w, output8_1, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params1); test_impl(input + offset_r * w + offset_c, w, output8_2, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2); for (int i = 0; i < out_h; ++i) { for (int j = 0; j < out_w; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output1[idx], output2[idx]) << "Mismatch at unit tests for " "av1_jnt_convolve_2d\n" << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } if (memcmp(output8_1, output8_2, sizeof(output8_1))) { for (int i = 0; i < MAX_SB_SIZE; ++i) { for (int j = 0; j < MAX_SB_SIZE; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output8_1[idx], output8_2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } } } } } } } } } } void AV1JntConvolve2DTest::RunSpeedTest(convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int has_subx = GET_PARAM(1); const int has_suby = GET_PARAM(2); const int block_idx = GET_PARAM(3); int subx = 0, suby = 0; uint8_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, CONV_BUF_TYPE, output[MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, output8[MAX_SB_SQUARE]); int hfilter = EIGHTTAP_REGULAR, vfilter = EIGHTTAP_REGULAR; for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); for (int i = 0; i < MAX_SB_SQUARE; ++i) { output[i] = rnd_.Rand16(); output8[i] = rnd_.Rand8(); } const int out_w = block_size_wide[block_idx]; const int out_h = block_size_high[block_idx]; const int num_loops = 1000000000 / (out_w + out_h); const int do_average = 0; const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); ConvolveParams conv_params = get_conv_params_no_round(do_average, 0, output, MAX_SB_SIZE, 1, 8); conv_params.use_jnt_comp_avg = 0; // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) test_impl(input + offset_r * w + offset_c, w, output8, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("%d,%d convolve %3dx%-3d: %7.2f us\n", has_subx, has_suby, out_w, out_h, 1000.0 * elapsed_time / num_loops); } } // namespace AV1Convolve2D namespace AV1HighbdConvolve2D { ::testing::internal::ParamGenerator BuildParams( highbd_convolve_2d_func filter, int has_subx, int has_suby) { return ::testing::Combine( ::testing::Range(8, 13, 2), ::testing::Values(filter), ::testing::Values(has_subx), ::testing::Values(has_suby), ::testing::Range(BLOCK_4X4, BLOCK_SIZES_ALL)); } AV1HighbdConvolve2DSrTest::~AV1HighbdConvolve2DSrTest() {} void AV1HighbdConvolve2DSrTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1HighbdConvolve2DSrTest::TearDown() { libaom_test::ClearSystemState(); } void AV1HighbdConvolve2DSrTest::RunSpeedTest( highbd_convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int bd = GET_PARAM(0); const int has_subx = GET_PARAM(2); const int has_suby = GET_PARAM(3); const int block_idx = GET_PARAM(4); int hfilter, vfilter, subx, suby; uint16_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, uint16_t, output[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); hfilter = EIGHTTAP_REGULAR; vfilter = EIGHTTAP_REGULAR; int do_average = 0; const int offset_r = 3; const int offset_c = 3; subx = 0; suby = 0; ConvolveParams conv_params = get_conv_params_no_round(do_average, 0, NULL, 0, 0, bd); // Make sure that sizes 2xN and Nx2 are also tested for chroma. const int num_sizes = (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 : 1; for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma const int out_w = block_size_wide[block_idx] >> shift; const int out_h = block_size_high[block_idx] >> shift; const int num_loops = 1000000000 / (out_w + out_h); const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) test_impl(input + offset_r * w + offset_c, w, output, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params, bd); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("%d,%d convolve %3dx%-3d: %7.2f us\n", has_subx, has_suby, out_w, out_h, 1000.0 * elapsed_time / num_loops); } } void AV1HighbdConvolve2DSrTest::RunCheckOutput( highbd_convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int bd = GET_PARAM(0); const int has_subx = GET_PARAM(2); const int has_suby = GET_PARAM(3); const int block_idx = GET_PARAM(4); int hfilter, vfilter, subx, suby; uint16_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, uint16_t, output[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint16_t, output2[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); for (int i = 0; i < MAX_SB_SQUARE; ++i) output[i] = output2[i] = rnd_.Rand31(); // Make sure that sizes 2xN and Nx2 are also tested for chroma. const int num_sizes = (block_size_wide[block_idx] == 4 || block_size_high[block_idx] == 4) ? 2 : 1; for (int shift = 0; shift < num_sizes; ++shift) { // luma and chroma const int out_w = block_size_wide[block_idx] >> shift; const int out_h = block_size_high[block_idx] >> shift; for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); for (int do_average = 0; do_average < 1; ++do_average) { ConvolveParams conv_params1 = get_conv_params_no_round(do_average, 0, NULL, 0, 0, bd); ConvolveParams conv_params2 = get_conv_params_no_round(do_average, 0, NULL, 0, 0, bd); const int subx_range = has_subx ? 16 : 1; const int suby_range = has_suby ? 16 : 1; for (subx = 0; subx < subx_range; ++subx) { for (suby = 0; suby < suby_range; ++suby) { // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_highbd_convolve_2d_sr_c(input + offset_r * w + offset_c, w, output, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params1, bd); test_impl(input + offset_r * w + offset_c, w, output2, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2, bd); if (memcmp(output, output2, sizeof(output))) { for (int i = 0; i < MAX_SB_SIZE; ++i) { for (int j = 0; j < MAX_SB_SIZE; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output[idx], output2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } } } } } } } } } AV1HighbdJntConvolve2DTest::~AV1HighbdJntConvolve2DTest() {} void AV1HighbdJntConvolve2DTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1HighbdJntConvolve2DTest::TearDown() { libaom_test::ClearSystemState(); } void AV1HighbdJntConvolve2DTest::RunSpeedTest( highbd_convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int bd = GET_PARAM(0); const int block_idx = GET_PARAM(4); int hfilter, vfilter, subx, suby; uint16_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, CONV_BUF_TYPE, output[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint16_t, output16[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); for (int i = 0; i < MAX_SB_SQUARE; ++i) output[i] = rnd_.Rand16(); hfilter = EIGHTTAP_REGULAR; vfilter = EIGHTTAP_REGULAR; int do_average = 0; const int out_w = block_size_wide[block_idx]; const int out_h = block_size_high[block_idx]; const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); ConvolveParams conv_params = get_conv_params_no_round(do_average, 0, output, MAX_SB_SIZE, 1, bd); // Test special case where jnt_comp_avg is not used conv_params.use_jnt_comp_avg = 0; subx = 0; suby = 0; // Choose random locations within the source block const int offset_r = 3; const int offset_c = 3; const int num_loops = 1000000000 / (out_w + out_h); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) test_impl(input + offset_r * w + offset_c, w, output16, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params, bd); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("convolve %3dx%-3d: %7.2f us\n", out_w, out_h, 1000.0 * elapsed_time / num_loops); } void AV1HighbdJntConvolve2DTest::RunCheckOutput( highbd_convolve_2d_func test_impl) { const int w = kMaxSize, h = kMaxSize; const int bd = GET_PARAM(0); const int has_subx = GET_PARAM(2); const int has_suby = GET_PARAM(3); const int block_idx = GET_PARAM(4); int hfilter, vfilter, subx, suby; uint16_t input[kMaxSize * kMaxSize]; DECLARE_ALIGNED(32, CONV_BUF_TYPE, output1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, CONV_BUF_TYPE, output2[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint16_t, output16_1[MAX_SB_SQUARE]); DECLARE_ALIGNED(32, uint16_t, output16_2[MAX_SB_SQUARE]); for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); for (int i = 0; i < MAX_SB_SQUARE; ++i) { output1[i] = output2[i] = rnd_.Rand16(); output16_1[i] = output16_2[i] = rnd_.Rand16(); } const int out_w = block_size_wide[block_idx]; const int out_h = block_size_high[block_idx]; for (hfilter = EIGHTTAP_REGULAR; hfilter < INTERP_FILTERS_ALL; ++hfilter) { for (vfilter = EIGHTTAP_REGULAR; vfilter < INTERP_FILTERS_ALL; ++vfilter) { const InterpFilterParams *filter_params_x = av1_get_interp_filter_params_with_block_size((InterpFilter)hfilter, out_w); const InterpFilterParams *filter_params_y = av1_get_interp_filter_params_with_block_size((InterpFilter)vfilter, out_h); for (int do_average = 0; do_average <= 1; ++do_average) { ConvolveParams conv_params1 = get_conv_params_no_round( do_average, 0, output1, MAX_SB_SIZE, 1, bd); ConvolveParams conv_params2 = get_conv_params_no_round( do_average, 0, output2, MAX_SB_SIZE, 1, bd); // Test special case where jnt_comp_avg is not used conv_params1.use_jnt_comp_avg = 0; conv_params2.use_jnt_comp_avg = 0; const int subx_range = has_subx ? 16 : 1; const int suby_range = has_suby ? 16 : 1; for (subx = 0; subx < subx_range; ++subx) { for (suby = 0; suby < suby_range; ++suby) { // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_highbd_jnt_convolve_2d_c(input + offset_r * w + offset_c, w, output16_1, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params1, bd); test_impl(input + offset_r * w + offset_c, w, output16_2, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2, bd); for (int i = 0; i < out_h; ++i) { for (int j = 0; j < out_w; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output1[idx], output2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } if (memcmp(output16_1, output16_2, sizeof(output16_1))) { for (int i = 0; i < MAX_SB_SIZE; ++i) { for (int j = 0; j < MAX_SB_SIZE; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output16_1[idx], output16_2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } } } } // Test different combination of fwd and bck offset weights for (int k = 0; k < 2; ++k) { for (int l = 0; l < 4; ++l) { conv_params1.use_jnt_comp_avg = 1; conv_params2.use_jnt_comp_avg = 1; conv_params1.fwd_offset = quant_dist_lookup_table[k][l][0]; conv_params1.bck_offset = quant_dist_lookup_table[k][l][1]; conv_params2.fwd_offset = quant_dist_lookup_table[k][l][0]; conv_params2.bck_offset = quant_dist_lookup_table[k][l][1]; const int subx_range = has_subx ? 16 : 1; const int suby_range = has_suby ? 16 : 1; for (subx = 0; subx < subx_range; ++subx) { for (suby = 0; suby < suby_range; ++suby) { // Choose random locations within the source block const int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); const int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_highbd_jnt_convolve_2d_c( input + offset_r * w + offset_c, w, output16_1, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params1, bd); test_impl(input + offset_r * w + offset_c, w, output16_2, MAX_SB_SIZE, out_w, out_h, filter_params_x, filter_params_y, subx, suby, &conv_params2, bd); for (int i = 0; i < out_h; ++i) { for (int j = 0; j < out_w; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output1[idx], output2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } if (memcmp(output16_1, output16_2, sizeof(output16_1))) { for (int i = 0; i < MAX_SB_SIZE; ++i) { for (int j = 0; j < MAX_SB_SIZE; ++j) { int idx = i * MAX_SB_SIZE + j; ASSERT_EQ(output16_1[idx], output16_2[idx]) << out_w << "x" << out_h << " Pixel mismatch at index " << idx << " = (" << i << ", " << j << "), sub pixel offset = (" << suby << ", " << subx << ")"; } } } } } } } } } } } } // namespace AV1HighbdConvolve2D } // namespace libaom_test