/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/entropy.h" #include "aom/aom_integer.h" using libaom_test::ACMRandom; namespace { // Horizontally and Vertically need 32x32: 8 Coeffs preceeding filtered section // 16 Coefs within filtered section // 8 Coeffs following filtered section const int kNumCoeffs = 1024; const int number_of_iterations = 10000; const int kSpeedTestNum = 500000; #define LOOP_PARAM \ int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh #define DUAL_LOOP_PARAM \ int p, const uint8_t *blimit0, const uint8_t *limit0, \ const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, \ const uint8_t *thresh1 typedef void (*loop_op_t)(uint8_t *s, LOOP_PARAM); typedef void (*dual_loop_op_t)(uint8_t *s, DUAL_LOOP_PARAM); typedef void (*hbdloop_op_t)(uint16_t *s, LOOP_PARAM, int bd); typedef void (*hbddual_loop_op_t)(uint16_t *s, DUAL_LOOP_PARAM, int bd); typedef ::testing::tuple hbdloop_param_t; typedef ::testing::tuple hbddual_loop_param_t; typedef ::testing::tuple loop_param_t; typedef ::testing::tuple dual_loop_param_t; template void InitInput(Pixel_t *s, Pixel_t *ref_s, ACMRandom *rnd, const uint8_t limit, const int mask, const int32_t p, const int i) { uint16_t tmp_s[kNumCoeffs]; for (int j = 0; j < kNumCoeffs;) { const uint8_t val = rnd->Rand8(); if (val & 0x80) { // 50% chance to choose a new value. tmp_s[j] = rnd->Rand16(); j++; } else { // 50% chance to repeat previous value in row X times. int k = 0; while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) { if (j < 1) { tmp_s[j] = rnd->Rand16(); } else if (val & 0x20) { // Increment by a value within the limit. tmp_s[j] = tmp_s[j - 1] + (limit - 1); } else { // Decrement by a value within the limit. tmp_s[j] = tmp_s[j - 1] - (limit - 1); } j++; } } } for (int j = 0; j < kNumCoeffs;) { const uint8_t val = rnd->Rand8(); if (val & 0x80) { j++; } else { // 50% chance to repeat previous value in column X times. int k = 0; while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) { if (j < 1) { tmp_s[j] = rnd->Rand16(); } else if (val & 0x20) { // Increment by a value within the limit. tmp_s[(j % 32) * 32 + j / 32] = tmp_s[((j - 1) % 32) * 32 + (j - 1) / 32] + (limit - 1); } else { // Decrement by a value within the limit. tmp_s[(j % 32) * 32 + j / 32] = tmp_s[((j - 1) % 32) * 32 + (j - 1) / 32] - (limit - 1); } j++; } } } for (int j = 0; j < kNumCoeffs; j++) { if (i % 2) { s[j] = tmp_s[j] & mask; } else { s[j] = tmp_s[p * (j % p) + j / p] & mask; } ref_s[j] = s[j]; } } uint8_t GetOuterThresh(ACMRandom *rnd) { return static_cast(rnd->PseudoUniform(3 * MAX_LOOP_FILTER + 5)); } uint8_t GetInnerThresh(ACMRandom *rnd) { return static_cast(rnd->PseudoUniform(MAX_LOOP_FILTER + 1)); } uint8_t GetHevThresh(ACMRandom *rnd) { return static_cast(rnd->PseudoUniform(MAX_LOOP_FILTER + 1) >> 4); } template class LoopTestParam : public ::testing::TestWithParam { public: virtual ~LoopTestParam() {} virtual void SetUp() { loopfilter_op_ = ::testing::get<0>(this->GetParam()); ref_loopfilter_op_ = ::testing::get<1>(this->GetParam()); bit_depth_ = ::testing::get<2>(this->GetParam()); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: int bit_depth_; int mask_; func_type_t loopfilter_op_; func_type_t ref_loopfilter_op_; }; void call_filter(uint16_t *s, LOOP_PARAM, int bd, hbdloop_op_t op) { op(s, p, blimit, limit, thresh, bd); } void call_filter(uint8_t *s, LOOP_PARAM, int bd, loop_op_t op) { (void)bd; op(s, p, blimit, limit, thresh); } void call_dualfilter(uint16_t *s, DUAL_LOOP_PARAM, int bd, hbddual_loop_op_t op) { op(s, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1, bd); } void call_dualfilter(uint8_t *s, DUAL_LOOP_PARAM, int bd, dual_loop_op_t op) { (void)bd; op(s, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1); }; typedef LoopTestParam Loop8Test6Param_hbd; typedef LoopTestParam Loop8Test6Param_lbd; typedef LoopTestParam Loop8Test9Param_hbd; typedef LoopTestParam Loop8Test9Param_lbd; #define OPCHECK(a, b) \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ const int count_test_block = number_of_iterations; \ const int32_t p = kNumCoeffs / 32; \ DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \ DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \ int err_count_total = 0; \ int first_failure = -1; \ for (int i = 0; i < count_test_block; ++i) { \ int err_count = 0; \ uint8_t tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ InitInput(s, ref_s, &rnd, *limit, mask_, p, i); \ call_filter(ref_s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_, \ ref_loopfilter_op_); \ ASM_REGISTER_STATE_CHECK(call_filter(s + 8 + p * 8, p, blimit, limit, \ thresh, bit_depth_, loopfilter_op_)); \ for (int j = 0; j < kNumCoeffs; ++j) { \ err_count += ref_s[j] != s[j]; \ } \ if (err_count && !err_count_total) { \ first_failure = i; \ } \ err_count_total += err_count; \ } \ EXPECT_EQ(0, err_count_total) \ << "Error: Loop8Test6Param, C output doesn't match SIMD " \ "loopfilter output. " \ << "First failed at test case " << first_failure; TEST_P(Loop8Test6Param_hbd, OperationCheck) { OPCHECK(uint16_t, 16); } TEST_P(Loop8Test6Param_lbd, OperationCheck) { OPCHECK(uint8_t, 8); } #define VALCHECK(a, b) \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ const int count_test_block = number_of_iterations; \ DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \ DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \ int err_count_total = 0; \ int first_failure = -1; \ for (int i = 0; i < count_test_block; ++i) { \ int err_count = 0; \ uint8_t tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ int32_t p = kNumCoeffs / 32; \ for (int j = 0; j < kNumCoeffs; ++j) { \ s[j] = rnd.Rand16() & mask_; \ ref_s[j] = s[j]; \ } \ call_filter(ref_s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_, \ ref_loopfilter_op_); \ ASM_REGISTER_STATE_CHECK(call_filter(s + 8 + p * 8, p, blimit, limit, \ thresh, bit_depth_, loopfilter_op_)); \ for (int j = 0; j < kNumCoeffs; ++j) { \ err_count += ref_s[j] != s[j]; \ } \ if (err_count && !err_count_total) { \ first_failure = i; \ } \ err_count_total += err_count; \ } \ EXPECT_EQ(0, err_count_total) \ << "Error: Loop8Test6Param, C output doesn't match SIMD " \ "loopfilter output. " \ << "First failed at test case " << first_failure; TEST_P(Loop8Test6Param_hbd, ValueCheck) { VALCHECK(uint16_t, 16); } TEST_P(Loop8Test6Param_lbd, ValueCheck) { VALCHECK(uint8_t, 8); } #define SPEEDCHECK(a, b) \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ const int count_test_block = kSpeedTestNum; \ const int32_t bd = bit_depth_; \ DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \ uint8_t tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ int32_t p = kNumCoeffs / 32; \ for (int j = 0; j < kNumCoeffs; ++j) { \ s[j] = rnd.Rand16() & mask_; \ } \ for (int i = 0; i < count_test_block; ++i) { \ call_filter(s + 8 + p * 8, p, blimit, limit, thresh, bd, loopfilter_op_); \ } TEST_P(Loop8Test6Param_hbd, DISABLED_Speed) { SPEEDCHECK(uint16_t, 16); } TEST_P(Loop8Test6Param_lbd, DISABLED_Speed) { SPEEDCHECK(uint8_t, 8); } #define OPCHECKd(a, b) \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ const int count_test_block = number_of_iterations; \ DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \ DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \ int err_count_total = 0; \ int first_failure = -1; \ for (int i = 0; i < count_test_block; ++i) { \ int err_count = 0; \ uint8_t tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ int32_t p = kNumCoeffs / 32; \ const uint8_t limit = *limit0 < *limit1 ? *limit0 : *limit1; \ InitInput(s, ref_s, &rnd, limit, mask_, p, i); \ call_dualfilter(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \ limit1, thresh1, bit_depth_, ref_loopfilter_op_); \ ASM_REGISTER_STATE_CHECK( \ call_dualfilter(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \ limit1, thresh1, bit_depth_, loopfilter_op_)); \ for (int j = 0; j < kNumCoeffs; ++j) { \ err_count += ref_s[j] != s[j]; \ } \ if (err_count && !err_count_total) { \ first_failure = i; \ } \ err_count_total += err_count; \ } \ EXPECT_EQ(0, err_count_total) \ << "Error: Loop8Test9Param, C output doesn't match SIMD " \ "loopfilter output. " \ << "First failed at test case " << first_failure; TEST_P(Loop8Test9Param_hbd, OperationCheck) { OPCHECKd(uint16_t, 16); } TEST_P(Loop8Test9Param_lbd, OperationCheck) { OPCHECKd(uint8_t, 8); } #define VALCHECKd(a, b) \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ const int count_test_block = number_of_iterations; \ DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \ DECLARE_ALIGNED(b, a, ref_s[kNumCoeffs]); \ int err_count_total = 0; \ int first_failure = -1; \ for (int i = 0; i < count_test_block; ++i) { \ int err_count = 0; \ uint8_t tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ int32_t p = kNumCoeffs / 32; \ for (int j = 0; j < kNumCoeffs; ++j) { \ s[j] = rnd.Rand16() & mask_; \ ref_s[j] = s[j]; \ } \ call_dualfilter(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \ limit1, thresh1, bit_depth_, ref_loopfilter_op_); \ ASM_REGISTER_STATE_CHECK( \ call_dualfilter(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \ limit1, thresh1, bit_depth_, loopfilter_op_)); \ for (int j = 0; j < kNumCoeffs; ++j) { \ err_count += ref_s[j] != s[j]; \ } \ if (err_count && !err_count_total) { \ first_failure = i; \ } \ err_count_total += err_count; \ } \ EXPECT_EQ(0, err_count_total) \ << "Error: Loop8Test9Param, C output doesn't match SIMD " \ "loopfilter output. " \ << "First failed at test case " << first_failure; TEST_P(Loop8Test9Param_hbd, ValueCheck) { VALCHECKd(uint16_t, 16); } TEST_P(Loop8Test9Param_lbd, ValueCheck) { VALCHECKd(uint8_t, 8); } #define SPEEDCHECKd(a, b) \ ACMRandom rnd(ACMRandom::DeterministicSeed()); \ const int count_test_block = kSpeedTestNum; \ DECLARE_ALIGNED(b, a, s[kNumCoeffs]); \ uint8_t tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetOuterThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetInnerThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ tmp = GetHevThresh(&rnd); \ DECLARE_ALIGNED(16, const uint8_t, \ thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, \ tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; \ int32_t p = kNumCoeffs / 32; \ for (int j = 0; j < kNumCoeffs; ++j) { \ s[j] = rnd.Rand16() & mask_; \ } \ for (int i = 0; i < count_test_block; ++i) { \ call_dualfilter(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, \ limit1, thresh1, bit_depth_, loopfilter_op_); \ } TEST_P(Loop8Test9Param_hbd, DISABLED_Speed) { SPEEDCHECKd(uint16_t, 16); } TEST_P(Loop8Test9Param_lbd, DISABLED_Speed) { SPEEDCHECKd(uint8_t, 8); } using ::testing::make_tuple; #if HAVE_SSE2 const hbdloop_param_t kHbdLoop8Test6[] = { make_tuple(&aom_highbd_lpf_horizontal_4_sse2, &aom_highbd_lpf_horizontal_4_c, 8), make_tuple(&aom_highbd_lpf_vertical_4_sse2, &aom_highbd_lpf_vertical_4_c, 8), make_tuple(&aom_highbd_lpf_horizontal_6_sse2, &aom_highbd_lpf_horizontal_6_c, 8), make_tuple(&aom_highbd_lpf_horizontal_8_sse2, &aom_highbd_lpf_horizontal_8_c, 8), make_tuple(&aom_highbd_lpf_horizontal_14_sse2, &aom_highbd_lpf_horizontal_14_c, 8), make_tuple(&aom_highbd_lpf_vertical_6_sse2, &aom_highbd_lpf_vertical_6_c, 8), make_tuple(&aom_highbd_lpf_vertical_8_sse2, &aom_highbd_lpf_vertical_8_c, 8), make_tuple(&aom_highbd_lpf_vertical_14_sse2, &aom_highbd_lpf_vertical_14_c, 8), make_tuple(&aom_highbd_lpf_horizontal_4_sse2, &aom_highbd_lpf_horizontal_4_c, 10), make_tuple(&aom_highbd_lpf_vertical_4_sse2, &aom_highbd_lpf_vertical_4_c, 10), make_tuple(&aom_highbd_lpf_horizontal_6_sse2, &aom_highbd_lpf_horizontal_6_c, 10), make_tuple(&aom_highbd_lpf_horizontal_8_sse2, &aom_highbd_lpf_horizontal_8_c, 10), make_tuple(&aom_highbd_lpf_horizontal_14_sse2, &aom_highbd_lpf_horizontal_14_c, 10), make_tuple(&aom_highbd_lpf_vertical_6_sse2, &aom_highbd_lpf_vertical_6_c, 10), make_tuple(&aom_highbd_lpf_vertical_8_sse2, &aom_highbd_lpf_vertical_8_c, 10), make_tuple(&aom_highbd_lpf_vertical_14_sse2, &aom_highbd_lpf_vertical_14_c, 10), make_tuple(&aom_highbd_lpf_horizontal_4_sse2, &aom_highbd_lpf_horizontal_4_c, 12), make_tuple(&aom_highbd_lpf_vertical_4_sse2, &aom_highbd_lpf_vertical_4_c, 12), make_tuple(&aom_highbd_lpf_horizontal_6_sse2, &aom_highbd_lpf_horizontal_6_c, 12), make_tuple(&aom_highbd_lpf_horizontal_8_sse2, &aom_highbd_lpf_horizontal_8_c, 12), make_tuple(&aom_highbd_lpf_horizontal_14_sse2, &aom_highbd_lpf_horizontal_14_c, 12), make_tuple(&aom_highbd_lpf_vertical_14_sse2, &aom_highbd_lpf_vertical_14_c, 12), make_tuple(&aom_highbd_lpf_vertical_6_sse2, &aom_highbd_lpf_vertical_6_c, 12), make_tuple(&aom_highbd_lpf_vertical_8_sse2, &aom_highbd_lpf_vertical_8_c, 12) }; INSTANTIATE_TEST_CASE_P(SSE2, Loop8Test6Param_hbd, ::testing::ValuesIn(kHbdLoop8Test6)); const loop_param_t kLoop8Test6[] = { make_tuple(&aom_lpf_horizontal_4_sse2, &aom_lpf_horizontal_4_c, 8), make_tuple(&aom_lpf_horizontal_8_sse2, &aom_lpf_horizontal_8_c, 8), make_tuple(&aom_lpf_horizontal_6_sse2, &aom_lpf_horizontal_6_c, 8), make_tuple(&aom_lpf_vertical_6_sse2, &aom_lpf_vertical_6_c, 8), make_tuple(&aom_lpf_horizontal_14_sse2, &aom_lpf_horizontal_14_c, 8), make_tuple(&aom_lpf_vertical_4_sse2, &aom_lpf_vertical_4_c, 8), make_tuple(&aom_lpf_vertical_8_sse2, &aom_lpf_vertical_8_c, 8), make_tuple(&aom_lpf_vertical_14_sse2, &aom_lpf_vertical_14_c, 8), }; INSTANTIATE_TEST_CASE_P(SSE2, Loop8Test6Param_lbd, ::testing::ValuesIn(kLoop8Test6)); const dual_loop_param_t kLoop8Test9[] = { make_tuple(&aom_lpf_horizontal_4_dual_sse2, &aom_lpf_horizontal_4_dual_c, 8), make_tuple(&aom_lpf_vertical_4_dual_sse2, &aom_lpf_vertical_4_dual_c, 8), make_tuple(&aom_lpf_horizontal_6_dual_sse2, &aom_lpf_horizontal_6_dual_c, 8), make_tuple(&aom_lpf_vertical_6_dual_sse2, &aom_lpf_vertical_6_dual_c, 8), make_tuple(&aom_lpf_horizontal_8_dual_sse2, &aom_lpf_horizontal_8_dual_c, 8), make_tuple(&aom_lpf_vertical_8_dual_sse2, &aom_lpf_vertical_8_dual_c, 8), make_tuple(&aom_lpf_horizontal_14_dual_sse2, &aom_lpf_horizontal_14_dual_c, 8), make_tuple(&aom_lpf_vertical_14_dual_sse2, &aom_lpf_vertical_14_dual_c, 8) }; INSTANTIATE_TEST_CASE_P(SSE2, Loop8Test9Param_lbd, ::testing::ValuesIn(kLoop8Test9)); #endif // HAVE_SSE2 #if HAVE_SSE2 const hbddual_loop_param_t kHbdLoop8Test9[] = { make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2, &aom_highbd_lpf_horizontal_4_dual_c, 8), make_tuple(&aom_highbd_lpf_horizontal_6_dual_sse2, &aom_highbd_lpf_horizontal_6_dual_c, 8), make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2, &aom_highbd_lpf_horizontal_8_dual_c, 8), make_tuple(&aom_highbd_lpf_horizontal_14_dual_sse2, &aom_highbd_lpf_horizontal_14_dual_c, 8), make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2, &aom_highbd_lpf_vertical_4_dual_c, 8), make_tuple(&aom_highbd_lpf_vertical_6_dual_sse2, &aom_highbd_lpf_vertical_6_dual_c, 8), make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2, &aom_highbd_lpf_vertical_8_dual_c, 8), make_tuple(&aom_highbd_lpf_vertical_14_dual_sse2, &aom_highbd_lpf_vertical_14_dual_c, 8), make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2, &aom_highbd_lpf_horizontal_4_dual_c, 10), make_tuple(&aom_highbd_lpf_horizontal_6_dual_sse2, &aom_highbd_lpf_horizontal_6_dual_c, 10), make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2, &aom_highbd_lpf_horizontal_8_dual_c, 10), make_tuple(&aom_highbd_lpf_horizontal_14_dual_sse2, &aom_highbd_lpf_horizontal_14_dual_c, 10), make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2, &aom_highbd_lpf_vertical_4_dual_c, 10), make_tuple(&aom_highbd_lpf_vertical_6_dual_sse2, &aom_highbd_lpf_vertical_6_dual_c, 10), make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2, &aom_highbd_lpf_vertical_8_dual_c, 10), make_tuple(&aom_highbd_lpf_vertical_14_dual_sse2, &aom_highbd_lpf_vertical_14_dual_c, 10), make_tuple(&aom_highbd_lpf_horizontal_4_dual_sse2, &aom_highbd_lpf_horizontal_4_dual_c, 12), make_tuple(&aom_highbd_lpf_horizontal_6_dual_sse2, &aom_highbd_lpf_horizontal_6_dual_c, 12), make_tuple(&aom_highbd_lpf_horizontal_8_dual_sse2, &aom_highbd_lpf_horizontal_8_dual_c, 12), make_tuple(&aom_highbd_lpf_horizontal_14_dual_sse2, &aom_highbd_lpf_horizontal_14_dual_c, 12), make_tuple(&aom_highbd_lpf_vertical_4_dual_sse2, &aom_highbd_lpf_vertical_4_dual_c, 12), make_tuple(&aom_highbd_lpf_vertical_6_dual_sse2, &aom_highbd_lpf_vertical_6_dual_c, 12), make_tuple(&aom_highbd_lpf_vertical_8_dual_sse2, &aom_highbd_lpf_vertical_8_dual_c, 12), make_tuple(&aom_highbd_lpf_vertical_14_dual_sse2, &aom_highbd_lpf_vertical_14_dual_c, 12), }; INSTANTIATE_TEST_CASE_P(SSE2, Loop8Test9Param_hbd, ::testing::ValuesIn(kHbdLoop8Test9)); #endif // HAVE_SSE2 #if HAVE_NEON const loop_param_t kLoop8Test6[] = { make_tuple(&aom_lpf_vertical_14_neon, &aom_lpf_vertical_14_c, 8), make_tuple(&aom_lpf_vertical_8_neon, &aom_lpf_vertical_8_c, 8), make_tuple(&aom_lpf_vertical_6_neon, &aom_lpf_vertical_6_c, 8), make_tuple(&aom_lpf_vertical_4_neon, &aom_lpf_vertical_4_c, 8), make_tuple(&aom_lpf_horizontal_14_neon, &aom_lpf_horizontal_14_c, 8), make_tuple(&aom_lpf_horizontal_8_neon, &aom_lpf_horizontal_8_c, 8), make_tuple(&aom_lpf_horizontal_6_neon, &aom_lpf_horizontal_6_c, 8), make_tuple(&aom_lpf_horizontal_4_neon, &aom_lpf_horizontal_4_c, 8) }; INSTANTIATE_TEST_CASE_P(NEON, Loop8Test6Param_lbd, ::testing::ValuesIn(kLoop8Test6)); #endif // HAVE_NEON #if HAVE_AVX2 const hbddual_loop_param_t kHbdLoop8Test9Avx2[] = { make_tuple(&aom_highbd_lpf_horizontal_4_dual_avx2, &aom_highbd_lpf_horizontal_4_dual_c, 8), make_tuple(&aom_highbd_lpf_horizontal_4_dual_avx2, &aom_highbd_lpf_horizontal_4_dual_c, 10), make_tuple(&aom_highbd_lpf_horizontal_4_dual_avx2, &aom_highbd_lpf_horizontal_4_dual_c, 12), make_tuple(&aom_highbd_lpf_horizontal_8_dual_avx2, &aom_highbd_lpf_horizontal_8_dual_c, 8), make_tuple(&aom_highbd_lpf_horizontal_8_dual_avx2, &aom_highbd_lpf_horizontal_8_dual_c, 10), make_tuple(&aom_highbd_lpf_horizontal_8_dual_avx2, &aom_highbd_lpf_horizontal_8_dual_c, 12), make_tuple(&aom_highbd_lpf_vertical_4_dual_avx2, &aom_highbd_lpf_vertical_4_dual_c, 8), make_tuple(&aom_highbd_lpf_vertical_4_dual_avx2, &aom_highbd_lpf_vertical_4_dual_c, 10), make_tuple(&aom_highbd_lpf_vertical_4_dual_avx2, &aom_highbd_lpf_vertical_4_dual_c, 12), make_tuple(&aom_highbd_lpf_vertical_8_dual_avx2, &aom_highbd_lpf_vertical_8_dual_c, 8), make_tuple(&aom_highbd_lpf_vertical_8_dual_avx2, &aom_highbd_lpf_vertical_8_dual_c, 10), make_tuple(&aom_highbd_lpf_vertical_8_dual_avx2, &aom_highbd_lpf_vertical_8_dual_c, 12), }; INSTANTIATE_TEST_CASE_P(AVX2, Loop8Test9Param_hbd, ::testing::ValuesIn(kHbdLoop8Test9Avx2)); #endif } // namespace