/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "test/function_equivalence_test.h" #include "test/register_state_check.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom/aom_integer.h" #include "av1/encoder/pickrst.h" #define MAX_WIENER_BLOCK 384 #define MAX_DATA_BLOCK (MAX_WIENER_BLOCK + WIENER_WIN) using libaom_test::FunctionEquivalenceTest; namespace { static void compute_stats_win_opt_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { ASSERT_TRUE(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA); int i, j, k, l, m, n; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const double avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); std::vector > M_int(wiener_win, std::vector(wiener_win, 0)); std::vector > H_int( wiener_win * wiener_win, std::vector(wiener_win * 8, 0)); std::vector > sumY(wiener_win, std::vector(wiener_win, 0)); int32_t sumX = 0; const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j += 2) { const uint8_t X1 = src[i * src_stride + j]; const uint8_t X2 = src[i * src_stride + j + 1]; sumX += X1 + X2; const uint8_t *dgd_ij = dgd_win + i * dgd_stride + j; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const uint8_t *dgd_ijkl = dgd_ij + k * dgd_stride + l; int64_t *H_int_temp = &H_int[(l * wiener_win + k)][0]; const uint8_t D1 = dgd_ijkl[0]; const uint8_t D2 = dgd_ijkl[1]; sumY[k][l] += D1 + D2; M_int[l][k] += D1 * X1 + D2 * X2; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m] + D2 * dgd_ij[n + dgd_stride * m + 1]; } } } } } } const double avg_square_sum = avg * avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { M[l * wiener_win + k] = M_int[l][k] + avg_square_sum - avg * (sumX + sumY[k][l]); for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H[(l * wiener_win + k) * wiener_win2 + m * wiener_win + n] = H_int[(l * wiener_win + k)][n * 8 + m] + avg_square_sum - avg * (sumY[k][l] + sumY[n][m]); } } } } } void compute_stats_opt_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { if (wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA) { compute_stats_win_opt_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); } else { av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); } } static const int kIterations = 100; static const double min_error = (double)(0.01); typedef void (*compute_stats_Func)(int wiener_win, const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H); typedef libaom_test::FuncParam TestFuncs; //////////////////////////////////////////////////////////////////////////////// // 8 bit //////////////////////////////////////////////////////////////////////////////// typedef ::testing::tuple WienerTestParam; class WienerTest : public ::testing::TestWithParam { public: virtual void SetUp() { target_func_ = GET_PARAM(0); } void runWienerTest(const int32_t wiener_win, int32_t run_times); void runWienerTest_ExtremeValues(const int32_t wiener_win); private: compute_stats_Func target_func_; ACMRandom rng_; }; void WienerTest::runWienerTest(const int32_t wiener_win, int32_t run_times) { const int32_t wiener_halfwin = wiener_win >> 1; const int32_t wiener_win2 = wiener_win * wiener_win; DECLARE_ALIGNED(32, uint8_t, dgd_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]); DECLARE_ALIGNED(32, uint8_t, src_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]); DECLARE_ALIGNED(32, double, M_ref[WIENER_WIN2]); DECLARE_ALIGNED(32, double, H_ref[WIENER_WIN2 * WIENER_WIN2]); DECLARE_ALIGNED(32, double, M_test[WIENER_WIN2]); DECLARE_ALIGNED(32, double, H_test[WIENER_WIN2 * WIENER_WIN2]); const int h_start = ((rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & (~7)); int h_end = run_times != 1 ? 256 : ((rng_.Rand16() % MAX_WIENER_BLOCK) & (~7)) + 8; const int v_start = ((rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & (~7)); int v_end = run_times != 1 ? 256 : ((rng_.Rand16() % MAX_WIENER_BLOCK) & (~7)) + 8; const int dgd_stride = h_end; const int src_stride = MAX_DATA_BLOCK; const int iters = run_times == 1 ? kIterations : 2; for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) { dgd_buf[i] = rng_.Rand8(); src_buf[i] = rng_.Rand8(); } uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin; uint8_t *src = src_buf; aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < run_times; ++i) { av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M_ref, H_ref); } aom_usec_timer_mark(&timer); const double time1 = static_cast(aom_usec_timer_elapsed(&timer)); aom_usec_timer_start(&timer); for (int i = 0; i < run_times; ++i) { target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M_test, H_test); } aom_usec_timer_mark(&timer); const double time2 = static_cast(aom_usec_timer_elapsed(&timer)); if (run_times > 10) { printf("win %d %3dx%-3d:%7.2f/%7.2fns", wiener_win, h_end, v_end, time1, time2); printf("(%3.2f)\n", time1 / time2); } int failed = 0; for (int i = 0; i < wiener_win2; ++i) { if (fabs(M_ref[i] - M_test[i]) > min_error) { failed = 1; printf("win %d M iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win, iter, i, M_ref[i], M_test[i]); break; } } // ASSERT_EQ(failed, 0); for (int i = 0; i < wiener_win2 * wiener_win2; ++i) { if (fabs(H_ref[i] - H_test[i]) > min_error) { failed = 1; printf("win %d H iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win, iter, i, H_ref[i], H_test[i]); break; } } ASSERT_EQ(failed, 0); } } void WienerTest::runWienerTest_ExtremeValues(const int32_t wiener_win) { const int32_t wiener_halfwin = wiener_win >> 1; const int32_t wiener_win2 = wiener_win * wiener_win; DECLARE_ALIGNED(32, uint8_t, dgd_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]); DECLARE_ALIGNED(32, uint8_t, src_buf[MAX_DATA_BLOCK * MAX_DATA_BLOCK]); DECLARE_ALIGNED(32, double, M_ref[WIENER_WIN2]); DECLARE_ALIGNED(32, double, H_ref[WIENER_WIN2 * WIENER_WIN2]); DECLARE_ALIGNED(32, double, M_test[WIENER_WIN2]); DECLARE_ALIGNED(32, double, H_test[WIENER_WIN2 * WIENER_WIN2]); const int h_start = 16; const int h_end = MAX_WIENER_BLOCK; const int v_start = 16; const int v_end = MAX_WIENER_BLOCK; const int dgd_stride = h_end; const int src_stride = MAX_DATA_BLOCK; const int iters = 1; for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) { for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) { dgd_buf[i] = 255; src_buf[i] = 255; } uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin; uint8_t *src = src_buf; av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M_ref, H_ref); target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M_test, H_test); int failed = 0; for (int i = 0; i < wiener_win2; ++i) { if (fabs(M_ref[i] - M_test[i]) > min_error) { failed = 1; printf("win %d M iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win, iter, i, M_ref[i], M_test[i]); break; } } // ASSERT_EQ(failed, 0); for (int i = 0; i < wiener_win2 * wiener_win2; ++i) { if (fabs(H_ref[i] - H_test[i]) > min_error) { failed = 1; printf("win %d H iter %d [%4d] ref %6.0f test %6.0f \n", wiener_win, iter, i, H_ref[i], H_test[i]); break; } } ASSERT_EQ(failed, 0); } } TEST_P(WienerTest, RandomValues) { runWienerTest(WIENER_WIN, 1); runWienerTest(WIENER_WIN_CHROMA, 1); } TEST_P(WienerTest, ExtremeValues) { runWienerTest_ExtremeValues(WIENER_WIN); runWienerTest_ExtremeValues(WIENER_WIN_CHROMA); } TEST_P(WienerTest, DISABLED_Speed) { runWienerTest(WIENER_WIN, 200); runWienerTest(WIENER_WIN_CHROMA, 200); } INSTANTIATE_TEST_CASE_P(C, WienerTest, ::testing::Values(compute_stats_opt_c)); #if HAVE_SSE4_1 INSTANTIATE_TEST_CASE_P(SSE4_1, WienerTest, ::testing::Values(av1_compute_stats_sse4_1)); #endif // HAVE_SSE4_1 #if HAVE_AVX2 INSTANTIATE_TEST_CASE_P(AVX2, WienerTest, ::testing::Values(av1_compute_stats_avx2)); #endif // HAVE_AVX2 } // namespace