// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jpegli/downsample.h" #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jpegli/downsample.cc" #include #include #include "lib/jpegli/encode_internal.h" #include "lib/jpegli/error.h" HWY_BEFORE_NAMESPACE(); namespace jpegli { namespace HWY_NAMESPACE { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Add; using hwy::HWY_NAMESPACE::Mul; using hwy::HWY_NAMESPACE::Vec; using D = HWY_CAPPED(float, 8); constexpr D d; void DownsampleRow2x1(const float* row_in, size_t len, float* row_out) { const size_t N = Lanes(d); const size_t len_out = len / 2; const auto mul = Set(d, 0.5f); Vec v0, v1; for (size_t x = 0; x < len_out; x += N) { LoadInterleaved2(d, row_in + 2 * x, v0, v1); Store(Mul(mul, Add(v0, v1)), d, row_out + x); } } void DownsampleRow3x1(const float* row_in, size_t len, float* row_out) { const size_t N = Lanes(d); const size_t len_out = len / 3; const auto mul = Set(d, 1.0f / 3); Vec v0, v1, v2; for (size_t x = 0; x < len_out; x += N) { LoadInterleaved3(d, row_in + 3 * x, v0, v1, v2); Store(Mul(mul, Add(Add(v0, v1), v2)), d, row_out + x); } } void DownsampleRow4x1(const float* row_in, size_t len, float* row_out) { const size_t N = Lanes(d); const size_t len_out = len / 4; const auto mul = Set(d, 0.25f); Vec v0, v1, v2, v3; for (size_t x = 0; x < len_out; x += N) { LoadInterleaved4(d, row_in + 4 * x, v0, v1, v2, v3); Store(Mul(mul, Add(Add(v0, v1), Add(v2, v3))), d, row_out + x); } } void Downsample2x1(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow2x1(rows_in[0], len, row_out); } void Downsample3x1(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow3x1(rows_in[0], len, row_out); } void Downsample4x1(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow4x1(rows_in[0], len, row_out); } void Downsample1x2(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { const size_t N = Lanes(d); const auto mul = Set(d, 0.5f); float* row0 = rows_in[0]; float* row1 = rows_in[1]; for (size_t x = 0; x < len; x += N) { Store(Mul(mul, Add(Load(d, row0 + x), Load(d, row1 + x))), d, row_out + x); } } void Downsample2x2(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { const size_t N = Lanes(d); const size_t len_out = len / 2; const auto mul = Set(d, 0.25f); float* row0 = rows_in[0]; float* row1 = rows_in[1]; Vec v0, v1, v2, v3; for (size_t x = 0; x < len_out; x += N) { LoadInterleaved2(d, row0 + 2 * x, v0, v1); LoadInterleaved2(d, row1 + 2 * x, v2, v3); Store(Mul(mul, Add(Add(v0, v1), Add(v2, v3))), d, row_out + x); } } void Downsample3x2(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow3x1(rows_in[0], len, rows_in[0]); DownsampleRow3x1(rows_in[1], len, rows_in[1]); Downsample1x2(rows_in, len / 3, row_out); } void Downsample4x2(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow4x1(rows_in[0], len, rows_in[0]); DownsampleRow4x1(rows_in[1], len, rows_in[1]); Downsample1x2(rows_in, len / 4, row_out); } void Downsample1x3(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { const size_t N = Lanes(d); const auto mul = Set(d, 1.0f / 3); float* row0 = rows_in[0]; float* row1 = rows_in[1]; float* row2 = rows_in[2]; for (size_t x = 0; x < len; x += N) { const auto in0 = Load(d, row0 + x); const auto in1 = Load(d, row1 + x); const auto in2 = Load(d, row2 + x); Store(Mul(mul, Add(Add(in0, in1), in2)), d, row_out + x); } } void Downsample2x3(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow2x1(rows_in[0], len, rows_in[0]); DownsampleRow2x1(rows_in[1], len, rows_in[1]); DownsampleRow2x1(rows_in[2], len, rows_in[2]); Downsample1x3(rows_in, len / 2, row_out); } void Downsample3x3(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow3x1(rows_in[0], len, rows_in[0]); DownsampleRow3x1(rows_in[1], len, rows_in[1]); DownsampleRow3x1(rows_in[2], len, rows_in[2]); Downsample1x3(rows_in, len / 3, row_out); } void Downsample4x3(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow4x1(rows_in[0], len, rows_in[0]); DownsampleRow4x1(rows_in[1], len, rows_in[1]); DownsampleRow4x1(rows_in[2], len, rows_in[2]); Downsample1x3(rows_in, len / 4, row_out); } void Downsample1x4(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { const size_t N = Lanes(d); const auto mul = Set(d, 0.25f); float* row0 = rows_in[0]; float* row1 = rows_in[1]; float* row2 = rows_in[2]; float* row3 = rows_in[3]; for (size_t x = 0; x < len; x += N) { const auto in0 = Load(d, row0 + x); const auto in1 = Load(d, row1 + x); const auto in2 = Load(d, row2 + x); const auto in3 = Load(d, row3 + x); Store(Mul(mul, Add(Add(in0, in1), Add(in2, in3))), d, row_out + x); } } void Downsample2x4(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow2x1(rows_in[0], len, rows_in[0]); DownsampleRow2x1(rows_in[1], len, rows_in[1]); DownsampleRow2x1(rows_in[2], len, rows_in[2]); DownsampleRow2x1(rows_in[3], len, rows_in[3]); Downsample1x4(rows_in, len / 2, row_out); } void Downsample3x4(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow3x1(rows_in[0], len, rows_in[0]); DownsampleRow3x1(rows_in[1], len, rows_in[1]); DownsampleRow3x1(rows_in[2], len, rows_in[2]); DownsampleRow3x1(rows_in[3], len, rows_in[3]); Downsample1x4(rows_in, len / 3, row_out); } void Downsample4x4(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) { DownsampleRow4x1(rows_in[0], len, rows_in[0]); DownsampleRow4x1(rows_in[1], len, rows_in[1]); DownsampleRow4x1(rows_in[2], len, rows_in[2]); DownsampleRow4x1(rows_in[3], len, rows_in[3]); Downsample1x4(rows_in, len / 4, row_out); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jpegli HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jpegli { HWY_EXPORT(Downsample1x2); HWY_EXPORT(Downsample1x3); HWY_EXPORT(Downsample1x4); HWY_EXPORT(Downsample2x1); HWY_EXPORT(Downsample2x2); HWY_EXPORT(Downsample2x3); HWY_EXPORT(Downsample2x4); HWY_EXPORT(Downsample3x1); HWY_EXPORT(Downsample3x2); HWY_EXPORT(Downsample3x3); HWY_EXPORT(Downsample3x4); HWY_EXPORT(Downsample4x1); HWY_EXPORT(Downsample4x2); HWY_EXPORT(Downsample4x3); HWY_EXPORT(Downsample4x4); void NullDownsample(float* rows_in[MAX_SAMP_FACTOR], size_t len, float* row_out) {} void ChooseDownsampleMethods(j_compress_ptr cinfo) { jpeg_comp_master* m = cinfo->master; for (int c = 0; c < cinfo->num_components; c++) { m->downsample_method[c] = nullptr; jpeg_component_info* comp = &cinfo->comp_info[c]; const int h_factor = cinfo->max_h_samp_factor / comp->h_samp_factor; const int v_factor = cinfo->max_v_samp_factor / comp->v_samp_factor; if (v_factor == 1) { if (h_factor == 1) { m->downsample_method[c] = NullDownsample; } else if (h_factor == 2) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample2x1); } else if (h_factor == 3) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample3x1); } else if (h_factor == 4) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample4x1); } } else if (v_factor == 2) { if (h_factor == 1) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample1x2); } else if (h_factor == 2) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample2x2); } else if (h_factor == 3) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample3x2); } else if (h_factor == 4) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample4x2); } } else if (v_factor == 3) { if (h_factor == 1) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample1x2); } else if (h_factor == 2) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample2x2); } else if (h_factor == 3) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample3x2); } else if (h_factor == 4) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample4x2); } } else if (v_factor == 4) { if (h_factor == 1) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample1x4); } else if (h_factor == 2) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample2x4); } else if (h_factor == 3) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample3x4); } else if (h_factor == 4) { m->downsample_method[c] = HWY_DYNAMIC_DISPATCH(Downsample4x4); } } if (m->downsample_method[c] == nullptr) { JPEGLI_ERROR("Unsupported downsampling ratio %dx%d", h_factor, v_factor); } } } void DownsampleInputBuffer(j_compress_ptr cinfo) { if (cinfo->max_h_samp_factor == 1 && cinfo->max_v_samp_factor == 1) { return; } jpeg_comp_master* m = cinfo->master; const size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor; const size_t y0 = m->next_iMCU_row * iMCU_height; const size_t y1 = y0 + iMCU_height; const size_t xsize_padded = m->xsize_blocks * DCTSIZE; for (int c = 0; c < cinfo->num_components; c++) { jpeg_component_info* comp = &cinfo->comp_info[c]; const int h_factor = cinfo->max_h_samp_factor / comp->h_samp_factor; const int v_factor = cinfo->max_v_samp_factor / comp->v_samp_factor; if (h_factor == 1 && v_factor == 1) { continue; } auto& input = *m->smooth_input[c]; auto& output = *m->raw_data[c]; const size_t yout0 = y0 / v_factor; float* rows_in[MAX_SAMP_FACTOR]; for (size_t yin = y0, yout = yout0; yin < y1; yin += v_factor, ++yout) { for (int iy = 0; iy < v_factor; ++iy) { rows_in[iy] = input.Row(yin + iy); } float* row_out = output.Row(yout); (*m->downsample_method[c])(rows_in, xsize_padded, row_out); } } } void ApplyInputSmoothing(j_compress_ptr cinfo) { if (!cinfo->smoothing_factor) { return; } jpeg_comp_master* m = cinfo->master; const float kW1 = cinfo->smoothing_factor / 1024.0; const float kW0 = 1.0f - 8.0f * kW1; const size_t iMCU_height = DCTSIZE * cinfo->max_v_samp_factor; const ssize_t y0 = m->next_iMCU_row * iMCU_height; const ssize_t y1 = y0 + iMCU_height; const ssize_t xsize_padded = m->xsize_blocks * DCTSIZE; for (int c = 0; c < cinfo->num_components; c++) { auto& input = m->input_buffer[c]; auto& output = *m->smooth_input[c]; if (m->next_iMCU_row == 0) { input.CopyRow(-1, 0, 1); } if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) { size_t last_row = m->ysize_blocks * DCTSIZE - 1; input.CopyRow(last_row + 1, last_row, 1); } // TODO(szabadka) SIMDify this. for (ssize_t y = y0; y < y1; ++y) { const float* row_t = input.Row(y - 1); const float* row_m = input.Row(y); const float* row_b = input.Row(y + 1); float* row_out = output.Row(y); for (ssize_t x = 0; x < xsize_padded; ++x) { float val_tl = row_t[x - 1]; float val_tm = row_t[x]; float val_tr = row_t[x + 1]; float val_ml = row_m[x - 1]; float val_mm = row_m[x]; float val_mr = row_m[x + 1]; float val_bl = row_b[x - 1]; float val_bm = row_b[x]; float val_br = row_b[x + 1]; float val1 = (val_tl + val_tm + val_tr + val_ml + val_mr + val_bl + val_bm + val_br); row_out[x] = val_mm * kW0 + val1 * kW1; } } } } } // namespace jpegli #endif // HWY_ONCE