// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jpegli/huffman.h" #include #include #include "lib/jpegli/common.h" #include "lib/jpegli/error.h" namespace jpegli { // Returns the table width of the next 2nd level table, count is the histogram // of bit lengths for the remaining symbols, len is the code length of the next // processed symbol. static inline int NextTableBitSize(const int* count, int len) { int left = 1 << (len - kJpegHuffmanRootTableBits); while (len < static_cast(kJpegHuffmanMaxBitLength)) { left -= count[len]; if (left <= 0) break; ++len; left <<= 1; } return len - kJpegHuffmanRootTableBits; } void BuildJpegHuffmanTable(const uint32_t* count, const uint32_t* symbols, HuffmanTableEntry* lut) { HuffmanTableEntry code; // current table entry HuffmanTableEntry* table; // next available space in table int len; // current code length int idx; // symbol index int key; // prefix code int reps; // number of replicate key values in current table int low; // low bits for current root entry int table_bits; // key length of current table int table_size; // size of current table // Make a local copy of the input bit length histogram. int tmp_count[kJpegHuffmanMaxBitLength + 1] = {0}; int total_count = 0; for (len = 1; len <= static_cast(kJpegHuffmanMaxBitLength); ++len) { tmp_count[len] = count[len]; total_count += tmp_count[len]; } table = lut; table_bits = kJpegHuffmanRootTableBits; table_size = 1 << table_bits; // Special case code with only one value. if (total_count == 1) { code.bits = 0; code.value = symbols[0]; for (key = 0; key < table_size; ++key) { table[key] = code; } return; } // Fill in root table. key = 0; idx = 0; for (len = 1; len <= kJpegHuffmanRootTableBits; ++len) { for (; tmp_count[len] > 0; --tmp_count[len]) { code.bits = len; code.value = symbols[idx++]; reps = 1 << (kJpegHuffmanRootTableBits - len); while (reps--) { table[key++] = code; } } } // Fill in 2nd level tables and add pointers to root table. table += table_size; table_size = 0; low = 0; for (len = kJpegHuffmanRootTableBits + 1; len <= static_cast(kJpegHuffmanMaxBitLength); ++len) { for (; tmp_count[len] > 0; --tmp_count[len]) { // Start a new sub-table if the previous one is full. if (low >= table_size) { table += table_size; table_bits = NextTableBitSize(tmp_count, len); table_size = 1 << table_bits; low = 0; lut[key].bits = table_bits + kJpegHuffmanRootTableBits; lut[key].value = (table - lut) - key; ++key; } code.bits = len - kJpegHuffmanRootTableBits; code.value = symbols[idx++]; reps = 1 << (table_bits - code.bits); while (reps--) { table[low++] = code; } } } } // A node of a Huffman tree. struct HuffmanTree { HuffmanTree(uint32_t count, int16_t left, int16_t right) : total_count(count), index_left(left), index_right_or_value(right) {} uint32_t total_count; int16_t index_left; int16_t index_right_or_value; }; void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth, uint8_t level) { if (p.index_left >= 0) { ++level; SetDepth(pool[p.index_left], pool, depth, level); SetDepth(pool[p.index_right_or_value], pool, depth, level); } else { depth[p.index_right_or_value] = level; } } // Sort the root nodes, least popular first. static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) { return v0.total_count < v1.total_count; } // This function will create a Huffman tree. // // The catch here is that the tree cannot be arbitrarily deep. // Brotli specifies a maximum depth of 15 bits for "code trees" // and 7 bits for "code length code trees." // // count_limit is the value that is to be faked as the minimum value // and this minimum value is raised until the tree matches the // maximum length requirement. // // This algorithm is not of excellent performance for very long data blocks, // especially when population counts are longer than 2**tree_limit, but // we are not planning to use this with extremely long blocks. // // See http://en.wikipedia.org/wiki/Huffman_coding void CreateHuffmanTree(const uint32_t* data, const size_t length, const int tree_limit, uint8_t* depth) { // For block sizes below 64 kB, we never need to do a second iteration // of this loop. Probably all of our block sizes will be smaller than // that, so this loop is mostly of academic interest. If we actually // would need this, we would be better off with the Katajainen algorithm. for (uint32_t count_limit = 1;; count_limit *= 2) { std::vector tree; tree.reserve(2 * length + 1); for (size_t i = length; i != 0;) { --i; if (data[i]) { const uint32_t count = std::max(data[i], count_limit - 1); tree.emplace_back(count, -1, static_cast(i)); } } const size_t n = tree.size(); if (n == 1) { // Fake value; will be fixed on upper level. depth[tree[0].index_right_or_value] = 1; break; } std::stable_sort(tree.begin(), tree.end(), Compare); // The nodes are: // [0, n): the sorted leaf nodes that we start with. // [n]: we add a sentinel here. // [n + 1, 2n): new parent nodes are added here, starting from // (n+1). These are naturally in ascending order. // [2n]: we add a sentinel at the end as well. // There will be (2n+1) elements at the end. const HuffmanTree sentinel(std::numeric_limits::max(), -1, -1); tree.push_back(sentinel); tree.push_back(sentinel); size_t i = 0; // Points to the next leaf node. size_t j = n + 1; // Points to the next non-leaf node. for (size_t k = n - 1; k != 0; --k) { size_t left, right; if (tree[i].total_count <= tree[j].total_count) { left = i; ++i; } else { left = j; ++j; } if (tree[i].total_count <= tree[j].total_count) { right = i; ++i; } else { right = j; ++j; } // The sentinel node becomes the parent node. size_t j_end = tree.size() - 1; tree[j_end].total_count = tree[left].total_count + tree[right].total_count; tree[j_end].index_left = static_cast(left); tree[j_end].index_right_or_value = static_cast(right); // Add back the last sentinel node. tree.push_back(sentinel); } JXL_DASSERT(tree.size() == 2 * n + 1); SetDepth(tree[2 * n - 1], &tree[0], depth, 0); // We need to pack the Huffman tree in tree_limit bits. // If this was not successful, add fake entities to the lowest values // and retry. if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) { break; } } } void ValidateHuffmanTable(j_common_ptr cinfo, const JHUFF_TBL* table, bool is_dc) { size_t total_symbols = 0; size_t total_p = 0; size_t max_depth = 0; for (size_t d = 1; d <= kJpegHuffmanMaxBitLength; ++d) { uint8_t count = table->bits[d]; if (count) { total_symbols += count; total_p += (1u << (kJpegHuffmanMaxBitLength - d)) * count; max_depth = d; } } total_p += 1u << (kJpegHuffmanMaxBitLength - max_depth); // sentinel symbol if (total_symbols == 0) { JPEGLI_ERROR("Empty Huffman table"); } if (total_symbols > kJpegHuffmanAlphabetSize) { JPEGLI_ERROR("Too many symbols in Huffman table"); } if (total_p != (1u << kJpegHuffmanMaxBitLength)) { JPEGLI_ERROR("Invalid bit length distribution"); } uint8_t symbol_seen[kJpegHuffmanAlphabetSize] = {}; for (size_t i = 0; i < total_symbols; ++i) { uint8_t symbol = table->huffval[i]; if (symbol_seen[symbol]) { JPEGLI_ERROR("Duplicate symbol %d in Huffman table", symbol); } symbol_seen[symbol] = 1; } } void AddStandardHuffmanTables(j_common_ptr cinfo, bool is_dc) { // Huffman tables from the JPEG standard. static constexpr JHUFF_TBL kStandardDCTables[2] = { // DC luma {{0, 0, 1, 5, 1, 1, 1, 1, 1, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, FALSE}, // DC chroma {{0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, FALSE}}; static constexpr JHUFF_TBL kStandardACTables[2] = { // AC luma {{0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125}, {0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa}, FALSE}, // AC chroma {{0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119}, {0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa}, FALSE}}; const JHUFF_TBL* std_tables = is_dc ? kStandardDCTables : kStandardACTables; JHUFF_TBL** tables; if (cinfo->is_decompressor) { j_decompress_ptr cinfo_d = reinterpret_cast(cinfo); tables = is_dc ? cinfo_d->dc_huff_tbl_ptrs : cinfo_d->ac_huff_tbl_ptrs; } else { j_compress_ptr cinfo_c = reinterpret_cast(cinfo); tables = is_dc ? cinfo_c->dc_huff_tbl_ptrs : cinfo_c->ac_huff_tbl_ptrs; } for (int i = 0; i < 2; ++i) { if (tables[i] == nullptr) { tables[i] = jpegli_alloc_huff_table(cinfo); memcpy(tables[i], &std_tables[i], sizeof(JHUFF_TBL)); ValidateHuffmanTable(cinfo, tables[i], is_dc); } } } } // namespace jpegli