// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_photon_noise.h" namespace jxl { namespace { // Assumes a daylight-like spectrum. // https://www.strollswithmydog.com/effective-quantum-efficiency-of-sensor/#:~:text=11%2C260%20photons/um%5E2/lx-s constexpr float kPhotonsPerLxSPerUm2 = 11260; // Order of magnitude for cameras in the 2010-2020 decade, taking the CFA into // account. constexpr float kEffectiveQuantumEfficiency = 0.20; // TODO(sboukortt): reevaluate whether these are good defaults, notably whether // it would be worth making read noise higher at lower ISO settings. constexpr float kPhotoResponseNonUniformity = 0.005; constexpr float kInputReferredReadNoise = 3; // Assumes a 35mm sensor. constexpr float kSensorAreaUm2 = 36000.f * 24000; template inline constexpr T Square(const T x) { return x * x; } template inline constexpr T Cube(const T x) { return x * x * x; } } // namespace NoiseParams SimulatePhotonNoise(const size_t xsize, const size_t ysize, const float iso) { const float kOpsinAbsorbanceBiasCbrt = std::cbrt(kOpsinAbsorbanceBias[1]); // Focal plane exposure for 18% of kDefaultIntensityTarget, in lx·s. // (ISO = 10 lx·s ÷ H) const float h_18 = 10 / iso; const float pixel_area_um2 = kSensorAreaUm2 / (xsize * ysize); const float electrons_per_pixel_18 = kEffectiveQuantumEfficiency * kPhotonsPerLxSPerUm2 * h_18 * pixel_area_um2; NoiseParams params; for (size_t i = 0; i < NoiseParams::kNumNoisePoints; ++i) { const float scaled_index = i / (NoiseParams::kNumNoisePoints - 2.f); // scaled_index is used for XYB = (0, 2·scaled_index, 2·scaled_index) const float y = 2 * scaled_index; // 1 = default intensity target const float linear = std::max( 0.f, Cube(y - kOpsinAbsorbanceBiasCbrt) + kOpsinAbsorbanceBias[1]); const float electrons_per_pixel = electrons_per_pixel_18 * (linear / 0.18f); // Quadrature sum of read noise, photon shot noise (sqrt(S) so simply not // squared here) and photo response non-uniformity. // https://doi.org/10.1117/3.725073 // Units are electrons rms. const float noise = std::sqrt(Square(kInputReferredReadNoise) + electrons_per_pixel + Square(kPhotoResponseNonUniformity * electrons_per_pixel)); const float linear_noise = noise * (0.18f / electrons_per_pixel_18); const float opsin_derivative = (1.f / 3) / Square(std::cbrt(linear - kOpsinAbsorbanceBias[1])); const float opsin_noise = linear_noise * opsin_derivative; // TODO(sboukortt): verify more thoroughly whether the denominator is // correct. params.lut[i] = Clamp1(opsin_noise / (0.22f // norm_const * std::sqrt(2.f) // red_noise + green_noise * 1.13f // standard deviation of a plane of generated noise ), 0.f, 1.f); } return params; } } // namespace jxl