// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #if defined(LIB_JXL_FAST_DCT_INL_H_) == defined(HWY_TARGET_TOGGLE) #ifdef LIB_JXL_FAST_DCT_INL_H_ #undef LIB_JXL_FAST_DCT_INL_H_ #else #define LIB_JXL_FAST_DCT_INL_H_ #endif #include #include #include #include "lib/jxl/base/status.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { namespace { #if HWY_TARGET == HWY_NEON HWY_NOINLINE void FastTransposeBlock(const int16_t* JXL_RESTRICT data_in, size_t stride_in, size_t N, size_t M, int16_t* JXL_RESTRICT data_out, size_t stride_out) { JXL_DASSERT(N % 8 == 0); JXL_DASSERT(M % 8 == 0); for (size_t i = 0; i < N; i += 8) { for (size_t j = 0; j < M; j += 8) { // TODO(veluca): one could optimize the M==8, stride_in==8 case further // with vld4. // This code is about 40% faster for N == M == stride_in == // stride_out == 8 // Using loads + stores to reshuffle things to be able to // use vld4 doesn't help. /* auto a0 = vld4q_s16(data_in); auto a1 = vld4q_s16(data_in + 32); int16x8x4_t out0; int16x8x4_t out1; out0.val[0] = vuzp1q_s16(a0.val[0], a1.val[0]); out0.val[1] = vuzp1q_s16(a0.val[1], a1.val[1]); out0.val[2] = vuzp1q_s16(a0.val[2], a1.val[2]); out0.val[3] = vuzp1q_s16(a0.val[3], a1.val[3]); out1.val[0] = vuzp2q_s16(a0.val[0], a1.val[0]); out1.val[1] = vuzp2q_s16(a0.val[1], a1.val[1]); out1.val[2] = vuzp2q_s16(a0.val[2], a1.val[2]); out1.val[3] = vuzp2q_s16(a0.val[3], a1.val[3]); vst1q_s16_x4(data_out, out0); vst1q_s16_x4(data_out + 32, out1); */ auto a0 = vld1q_s16(data_in + i * stride_in + j); auto a1 = vld1q_s16(data_in + (i + 1) * stride_in + j); auto a2 = vld1q_s16(data_in + (i + 2) * stride_in + j); auto a3 = vld1q_s16(data_in + (i + 3) * stride_in + j); auto a01 = vtrnq_s16(a0, a1); auto a23 = vtrnq_s16(a2, a3); auto four0 = vtrnq_s32(vreinterpretq_s32_s16(a01.val[0]), vreinterpretq_s32_s16(a23.val[0])); auto four1 = vtrnq_s32(vreinterpretq_s32_s16(a01.val[1]), vreinterpretq_s32_s16(a23.val[1])); auto a4 = vld1q_s16(data_in + (i + 4) * stride_in + j); auto a5 = vld1q_s16(data_in + (i + 5) * stride_in + j); auto a6 = vld1q_s16(data_in + (i + 6) * stride_in + j); auto a7 = vld1q_s16(data_in + (i + 7) * stride_in + j); auto a45 = vtrnq_s16(a4, a5); auto a67 = vtrnq_s16(a6, a7); auto four2 = vtrnq_s32(vreinterpretq_s32_s16(a45.val[0]), vreinterpretq_s32_s16(a67.val[0])); auto four3 = vtrnq_s32(vreinterpretq_s32_s16(a45.val[1]), vreinterpretq_s32_s16(a67.val[1])); auto out0 = vcombine_s32(vget_low_s32(four0.val[0]), vget_low_s32(four2.val[0])); auto out1 = vcombine_s32(vget_low_s32(four1.val[0]), vget_low_s32(four3.val[0])); auto out2 = vcombine_s32(vget_low_s32(four0.val[1]), vget_low_s32(four2.val[1])); auto out3 = vcombine_s32(vget_low_s32(four1.val[1]), vget_low_s32(four3.val[1])); auto out4 = vcombine_s32(vget_high_s32(four0.val[0]), vget_high_s32(four2.val[0])); auto out5 = vcombine_s32(vget_high_s32(four1.val[0]), vget_high_s32(four3.val[0])); auto out6 = vcombine_s32(vget_high_s32(four0.val[1]), vget_high_s32(four2.val[1])); auto out7 = vcombine_s32(vget_high_s32(four1.val[1]), vget_high_s32(four3.val[1])); vst1q_s16(data_out + j * stride_out + i, vreinterpretq_s16_s32(out0)); vst1q_s16(data_out + (j + 1) * stride_out + i, vreinterpretq_s16_s32(out1)); vst1q_s16(data_out + (j + 2) * stride_out + i, vreinterpretq_s16_s32(out2)); vst1q_s16(data_out + (j + 3) * stride_out + i, vreinterpretq_s16_s32(out3)); vst1q_s16(data_out + (j + 4) * stride_out + i, vreinterpretq_s16_s32(out4)); vst1q_s16(data_out + (j + 5) * stride_out + i, vreinterpretq_s16_s32(out5)); vst1q_s16(data_out + (j + 6) * stride_out + i, vreinterpretq_s16_s32(out6)); vst1q_s16(data_out + (j + 7) * stride_out + i, vreinterpretq_s16_s32(out7)); } } } template struct FastDCTTag {}; #include "lib/jxl/fast_dct128-inl.h" #include "lib/jxl/fast_dct16-inl.h" #include "lib/jxl/fast_dct256-inl.h" #include "lib/jxl/fast_dct32-inl.h" #include "lib/jxl/fast_dct64-inl.h" #include "lib/jxl/fast_dct8-inl.h" template struct ComputeFastScaledIDCT { // scratch_space must be aligned, and should have space for ROWS*COLS // int16_ts. HWY_MAYBE_UNUSED void operator()(int16_t* JXL_RESTRICT from, int16_t* to, size_t to_stride, int16_t* JXL_RESTRICT scratch_space) { // Reverse the steps done in ComputeScaledDCT. if (ROWS < COLS) { FastTransposeBlock(from, COLS, ROWS, COLS, scratch_space, ROWS); FastIDCT(FastDCTTag(), scratch_space, ROWS, from, ROWS, ROWS); FastTransposeBlock(from, ROWS, COLS, ROWS, scratch_space, COLS); FastIDCT(FastDCTTag(), scratch_space, COLS, to, to_stride, COLS); } else { FastIDCT(FastDCTTag(), from, ROWS, scratch_space, ROWS, ROWS); FastTransposeBlock(scratch_space, ROWS, COLS, ROWS, from, COLS); FastIDCT(FastDCTTag(), from, COLS, to, to_stride, COLS); } } }; #endif template HWY_NOINLINE void TestFastIDCT() { #if HWY_TARGET == HWY_NEON auto pixels_mem = hwy::AllocateAligned(N * M); float* pixels = pixels_mem.get(); auto dct_mem = hwy::AllocateAligned(N * M); float* dct = dct_mem.get(); auto dct_i_mem = hwy::AllocateAligned(N * M); int16_t* dct_i = dct_i_mem.get(); auto dct_in_mem = hwy::AllocateAligned(N * M); int16_t* dct_in = dct_in_mem.get(); auto idct_mem = hwy::AllocateAligned(N * M); int16_t* idct = idct_mem.get(); auto scratch_space_mem = hwy::AllocateAligned(N * M * 2); float* scratch_space = scratch_space_mem.get(); auto scratch_space_i_mem = hwy::AllocateAligned(N * M * 2); int16_t* scratch_space_i = scratch_space_i_mem.get(); Rng rng(0); for (size_t i = 0; i < N * M; i++) { pixels[i] = rng.UniformF(-1, 1); } ComputeScaledDCT()(DCTFrom(pixels, N), dct, scratch_space); size_t integer_bits = std::max(FastIDCTIntegerBits(FastDCTTag()), FastIDCTIntegerBits(FastDCTTag())); // Enough range for [-2, 2] output values. JXL_ASSERT(integer_bits <= 14); float scale = (1 << (14 - integer_bits)); for (size_t i = 0; i < N * M; i++) { dct_i[i] = std::round(dct[i] * scale); } for (size_t j = 0; j < 40000000 / (M * N); j++) { memcpy(dct_in, dct_i, sizeof(*dct_i) * N * M); ComputeFastScaledIDCT()(dct_in, idct, N, scratch_space_i); } float max_error = 0; for (size_t i = 0; i < M * N; i++) { float err = std::abs(idct[i] * (1.0f / scale) - pixels[i]); if (std::abs(err) > max_error) { max_error = std::abs(err); } } printf("max error: %f mantissa bits: %d\n", max_error, 14 - (int)integer_bits); #endif } template HWY_NOINLINE void TestFloatIDCT() { auto pixels_mem = hwy::AllocateAligned(N * M); float* pixels = pixels_mem.get(); auto dct_mem = hwy::AllocateAligned(N * M); float* dct = dct_mem.get(); auto idct_mem = hwy::AllocateAligned(N * M); float* idct = idct_mem.get(); auto dct_in_mem = hwy::AllocateAligned(N * M); float* dct_in = dct_mem.get(); auto scratch_space_mem = hwy::AllocateAligned(N * M * 2); float* scratch_space = scratch_space_mem.get(); Rng rng(0); for (size_t i = 0; i < N * M; i++) { pixels[i] = rng.UniformF(-1, 1); } ComputeScaledDCT()(DCTFrom(pixels, N), dct, scratch_space); for (size_t j = 0; j < 40000000 / (M * N); j++) { memcpy(dct_in, dct, sizeof(*dct) * N * M); ComputeScaledIDCT()(dct_in, DCTTo(idct, N), scratch_space); } float max_error = 0; for (size_t i = 0; i < M * N; i++) { float err = std::abs(idct[i] - pixels[i]); if (std::abs(err) > max_error) { max_error = std::abs(err); } } printf("max error: %e\n", max_error); } } // namespace // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #endif // LIB_JXL_FAST_DCT_INL_H_