/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "api/units/data_rate.h" #include "rtc_base/logging.h" #include "test/gtest.h" namespace webrtc { namespace test { TEST(DataRateTest, CompilesWithChecksAndLogs) { DataRate a = DataRate::KilobitsPerSec(300); DataRate b = DataRate::KilobitsPerSec(210); RTC_CHECK_GT(a, b); RTC_LOG(LS_INFO) << a; } TEST(DataRateTest, ConstExpr) { constexpr int64_t kValue = 12345; constexpr DataRate kDataRateZero = DataRate::Zero(); constexpr DataRate kDataRateInf = DataRate::Infinity(); static_assert(kDataRateZero.IsZero(), ""); static_assert(kDataRateInf.IsInfinite(), ""); static_assert(kDataRateInf.bps_or(-1) == -1, ""); static_assert(kDataRateInf > kDataRateZero, ""); constexpr DataRate kDataRateBps = DataRate::BitsPerSec(kValue); constexpr DataRate kDataRateKbps = DataRate::KilobitsPerSec(kValue); static_assert(kDataRateBps.bps() == kValue, ""); static_assert(kDataRateBps.bps_or(0) == kValue, ""); static_assert(kDataRateKbps.kbps_or(0) == kValue, ""); } TEST(DataRateTest, GetBackSameValues) { const int64_t kValue = 123 * 8; EXPECT_EQ(DataRate::BitsPerSec(kValue).bps(), kValue); EXPECT_EQ(DataRate::KilobitsPerSec(kValue).kbps(), kValue); } TEST(DataRateTest, GetDifferentPrefix) { const int64_t kValue = 123 * 8000; EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps(), kValue / 1000); } TEST(DataRateTest, IdentityChecks) { const int64_t kValue = 3000; EXPECT_TRUE(DataRate::Zero().IsZero()); EXPECT_FALSE(DataRate::BitsPerSec(kValue).IsZero()); EXPECT_TRUE(DataRate::Infinity().IsInfinite()); EXPECT_FALSE(DataRate::Zero().IsInfinite()); EXPECT_FALSE(DataRate::BitsPerSec(kValue).IsInfinite()); EXPECT_FALSE(DataRate::Infinity().IsFinite()); EXPECT_TRUE(DataRate::BitsPerSec(kValue).IsFinite()); EXPECT_TRUE(DataRate::Zero().IsFinite()); } TEST(DataRateTest, ComparisonOperators) { const int64_t kSmall = 450; const int64_t kLarge = 451; const DataRate small = DataRate::BitsPerSec(kSmall); const DataRate large = DataRate::BitsPerSec(kLarge); EXPECT_EQ(DataRate::Zero(), DataRate::BitsPerSec(0)); EXPECT_EQ(DataRate::Infinity(), DataRate::Infinity()); EXPECT_EQ(small, small); EXPECT_LE(small, small); EXPECT_GE(small, small); EXPECT_NE(small, large); EXPECT_LE(small, large); EXPECT_LT(small, large); EXPECT_GE(large, small); EXPECT_GT(large, small); EXPECT_LT(DataRate::Zero(), small); EXPECT_GT(DataRate::Infinity(), large); } TEST(DataRateTest, ConvertsToAndFromDouble) { const int64_t kValue = 128; const double kDoubleValue = static_cast(kValue); const double kDoubleKbps = kValue * 1e-3; const double kFloatKbps = static_cast(kDoubleKbps); EXPECT_EQ(DataRate::BitsPerSec(kValue).bps(), kDoubleValue); EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps(), kDoubleKbps); EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps(), kFloatKbps); EXPECT_EQ(DataRate::BitsPerSec(kDoubleValue).bps(), kValue); EXPECT_EQ(DataRate::KilobitsPerSec(kDoubleKbps).bps(), kValue); const double kInfinity = std::numeric_limits::infinity(); EXPECT_EQ(DataRate::Infinity().bps(), kInfinity); EXPECT_TRUE(DataRate::BitsPerSec(kInfinity).IsInfinite()); EXPECT_TRUE(DataRate::KilobitsPerSec(kInfinity).IsInfinite()); } TEST(DataRateTest, Clamping) { const DataRate upper = DataRate::KilobitsPerSec(800); const DataRate lower = DataRate::KilobitsPerSec(100); const DataRate under = DataRate::KilobitsPerSec(100); const DataRate inside = DataRate::KilobitsPerSec(500); const DataRate over = DataRate::KilobitsPerSec(1000); EXPECT_EQ(under.Clamped(lower, upper), lower); EXPECT_EQ(inside.Clamped(lower, upper), inside); EXPECT_EQ(over.Clamped(lower, upper), upper); DataRate mutable_rate = lower; mutable_rate.Clamp(lower, upper); EXPECT_EQ(mutable_rate, lower); mutable_rate = inside; mutable_rate.Clamp(lower, upper); EXPECT_EQ(mutable_rate, inside); mutable_rate = over; mutable_rate.Clamp(lower, upper); EXPECT_EQ(mutable_rate, upper); } TEST(DataRateTest, MathOperations) { const int64_t kValueA = 450; const int64_t kValueB = 267; const DataRate rate_a = DataRate::BitsPerSec(kValueA); const DataRate rate_b = DataRate::BitsPerSec(kValueB); const int32_t kInt32Value = 123; const double kFloatValue = 123.0; EXPECT_EQ((rate_a + rate_b).bps(), kValueA + kValueB); EXPECT_EQ((rate_a - rate_b).bps(), kValueA - kValueB); EXPECT_EQ((rate_a * kValueB).bps(), kValueA * kValueB); EXPECT_EQ((rate_a * kInt32Value).bps(), kValueA * kInt32Value); EXPECT_EQ((rate_a * kFloatValue).bps(), kValueA * kFloatValue); EXPECT_EQ(rate_a / rate_b, static_cast(kValueA) / kValueB); EXPECT_EQ((rate_a / 10).bps(), kValueA / 10); EXPECT_NEAR((rate_a / 0.5).bps(), kValueA * 2, 1); DataRate mutable_rate = DataRate::BitsPerSec(kValueA); mutable_rate += rate_b; EXPECT_EQ(mutable_rate.bps(), kValueA + kValueB); mutable_rate -= rate_a; EXPECT_EQ(mutable_rate.bps(), kValueB); } TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) { const int64_t kSeconds = 5; const int64_t kBitsPerSecond = 440; const int64_t kBytes = 44000; const TimeDelta delta_a = TimeDelta::Seconds(kSeconds); const DataRate rate_b = DataRate::BitsPerSec(kBitsPerSecond); const DataSize size_c = DataSize::Bytes(kBytes); EXPECT_EQ((delta_a * rate_b).bytes(), kSeconds * kBitsPerSecond / 8); EXPECT_EQ((rate_b * delta_a).bytes(), kSeconds * kBitsPerSecond / 8); EXPECT_EQ((size_c / delta_a).bps(), kBytes * 8 / kSeconds); EXPECT_EQ((size_c / rate_b).seconds(), kBytes * 8 / kBitsPerSecond); } TEST(UnitConversionTest, DataRateAndDataSizeAndFrequency) { const int64_t kHertz = 30; const int64_t kBitsPerSecond = 96000; const int64_t kBytes = 1200; const Frequency freq_a = Frequency::Hertz(kHertz); const DataRate rate_b = DataRate::BitsPerSec(kBitsPerSecond); const DataSize size_c = DataSize::Bytes(kBytes); EXPECT_EQ((freq_a * size_c).bps(), kHertz * kBytes * 8); EXPECT_EQ((size_c * freq_a).bps(), kHertz * kBytes * 8); EXPECT_EQ((rate_b / size_c).hertz(), kBitsPerSecond / kBytes / 8); EXPECT_EQ((rate_b / freq_a).bytes(), kBitsPerSecond / kHertz / 8); } TEST(UnitConversionDeathTest, DivisionFailsOnLargeSize) { // Note that the failure is expected since the current implementation is // implementated in a way that does not support division of large sizes. If // the implementation is changed, this test can safely be removed. const int64_t kJustSmallEnoughForDivision = std::numeric_limits::max() / 8000000; const DataSize large_size = DataSize::Bytes(kJustSmallEnoughForDivision); const DataRate data_rate = DataRate::KilobitsPerSec(100); const TimeDelta time_delta = TimeDelta::Millis(100); EXPECT_TRUE((large_size / data_rate).IsFinite()); EXPECT_TRUE((large_size / time_delta).IsFinite()); #if GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON const int64_t kToolargeForDivision = kJustSmallEnoughForDivision + 1; const DataSize too_large_size = DataSize::Bytes(kToolargeForDivision); EXPECT_DEATH(too_large_size / data_rate, ""); EXPECT_DEATH(too_large_size / time_delta, ""); #endif // GTEST_HAS_DEATH_TEST && !!defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON } } // namespace test } // namespace webrtc