/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "audio/remix_resample.h" #include #include "common_audio/resampler/include/push_resampler.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "test/gtest.h" namespace webrtc { namespace voe { namespace { int GetFrameSize(int sample_rate_hz) { return sample_rate_hz / 100; } class UtilityTest : public ::testing::Test { protected: UtilityTest() { src_frame_.sample_rate_hz_ = 16000; src_frame_.samples_per_channel_ = src_frame_.sample_rate_hz_ / 100; src_frame_.num_channels_ = 1; dst_frame_.CopyFrom(src_frame_); golden_frame_.CopyFrom(src_frame_); } void RunResampleTest(int src_channels, int src_sample_rate_hz, int dst_channels, int dst_sample_rate_hz); PushResampler resampler_; AudioFrame src_frame_; AudioFrame dst_frame_; AudioFrame golden_frame_; }; // Sets the signal value to increase by `data` with every sample. Floats are // used so non-integer values result in rounding error, but not an accumulating // error. void SetMonoFrame(float data, int sample_rate_hz, AudioFrame* frame) { frame->Mute(); frame->num_channels_ = 1; frame->sample_rate_hz_ = sample_rate_hz; frame->samples_per_channel_ = GetFrameSize(sample_rate_hz); int16_t* frame_data = frame->mutable_data(); for (size_t i = 0; i < frame->samples_per_channel_; i++) { frame_data[i] = static_cast(data * i); } } // Keep the existing sample rate. void SetMonoFrame(float data, AudioFrame* frame) { SetMonoFrame(data, frame->sample_rate_hz_, frame); } // Sets the signal value to increase by `left` and `right` with every sample in // each channel respectively. void SetStereoFrame(float left, float right, int sample_rate_hz, AudioFrame* frame) { frame->Mute(); frame->num_channels_ = 2; frame->sample_rate_hz_ = sample_rate_hz; frame->samples_per_channel_ = GetFrameSize(sample_rate_hz); int16_t* frame_data = frame->mutable_data(); for (size_t i = 0; i < frame->samples_per_channel_; i++) { frame_data[i * 2] = static_cast(left * i); frame_data[i * 2 + 1] = static_cast(right * i); } } // Keep the existing sample rate. void SetStereoFrame(float left, float right, AudioFrame* frame) { SetStereoFrame(left, right, frame->sample_rate_hz_, frame); } // Sets the signal value to increase by `ch1`, `ch2`, `ch3`, `ch4` with every // sample in each channel respectively. void SetQuadFrame(float ch1, float ch2, float ch3, float ch4, int sample_rate_hz, AudioFrame* frame) { frame->Mute(); frame->num_channels_ = 4; frame->sample_rate_hz_ = sample_rate_hz; frame->samples_per_channel_ = GetFrameSize(sample_rate_hz); int16_t* frame_data = frame->mutable_data(); for (size_t i = 0; i < frame->samples_per_channel_; i++) { frame_data[i * 4] = static_cast(ch1 * i); frame_data[i * 4 + 1] = static_cast(ch2 * i); frame_data[i * 4 + 2] = static_cast(ch3 * i); frame_data[i * 4 + 3] = static_cast(ch4 * i); } } void VerifyParams(const AudioFrame& ref_frame, const AudioFrame& test_frame) { EXPECT_EQ(ref_frame.num_channels_, test_frame.num_channels_); EXPECT_EQ(ref_frame.samples_per_channel_, test_frame.samples_per_channel_); EXPECT_EQ(ref_frame.sample_rate_hz_, test_frame.sample_rate_hz_); } // Computes the best SNR based on the error between `ref_frame` and // `test_frame`. It allows for up to a `max_delay` in samples between the // signals to compensate for the resampling delay. float ComputeSNR(const AudioFrame& ref_frame, const AudioFrame& test_frame, size_t max_delay) { VerifyParams(ref_frame, test_frame); float best_snr = 0; size_t best_delay = 0; for (size_t delay = 0; delay <= max_delay; delay++) { float mse = 0; float variance = 0; const int16_t* ref_frame_data = ref_frame.data(); const int16_t* test_frame_data = test_frame.data(); for (size_t i = 0; i < ref_frame.samples_per_channel_ * ref_frame.num_channels_ - delay; i++) { int error = ref_frame_data[i] - test_frame_data[i + delay]; mse += error * error; variance += ref_frame_data[i] * ref_frame_data[i]; } float snr = 100; // We assign 100 dB to the zero-error case. if (mse > 0) snr = 10 * std::log10(variance / mse); if (snr > best_snr) { best_snr = snr; best_delay = delay; } } printf("SNR=%.1f dB at delay=%zu\n", best_snr, best_delay); return best_snr; } void VerifyFramesAreEqual(const AudioFrame& ref_frame, const AudioFrame& test_frame) { VerifyParams(ref_frame, test_frame); const int16_t* ref_frame_data = ref_frame.data(); const int16_t* test_frame_data = test_frame.data(); for (size_t i = 0; i < ref_frame.samples_per_channel_ * ref_frame.num_channels_; i++) { EXPECT_EQ(ref_frame_data[i], test_frame_data[i]); } } void UtilityTest::RunResampleTest(int src_channels, int src_sample_rate_hz, int dst_channels, int dst_sample_rate_hz) { PushResampler resampler; // Create a new one with every test. const int16_t kSrcCh1 = 30; // Shouldn't overflow for any used sample rate. const int16_t kSrcCh2 = 15; const int16_t kSrcCh3 = 22; const int16_t kSrcCh4 = 8; const float resampling_factor = (1.0 * src_sample_rate_hz) / dst_sample_rate_hz; const float dst_ch1 = resampling_factor * kSrcCh1; const float dst_ch2 = resampling_factor * kSrcCh2; const float dst_ch3 = resampling_factor * kSrcCh3; const float dst_ch4 = resampling_factor * kSrcCh4; const float dst_stereo_to_mono = (dst_ch1 + dst_ch2) / 2; const float dst_quad_to_mono = (dst_ch1 + dst_ch2 + dst_ch3 + dst_ch4) / 4; const float dst_quad_to_stereo_ch1 = (dst_ch1 + dst_ch2) / 2; const float dst_quad_to_stereo_ch2 = (dst_ch3 + dst_ch4) / 2; if (src_channels == 1) SetMonoFrame(kSrcCh1, src_sample_rate_hz, &src_frame_); else if (src_channels == 2) SetStereoFrame(kSrcCh1, kSrcCh2, src_sample_rate_hz, &src_frame_); else SetQuadFrame(kSrcCh1, kSrcCh2, kSrcCh3, kSrcCh4, src_sample_rate_hz, &src_frame_); if (dst_channels == 1) { SetMonoFrame(0, dst_sample_rate_hz, &dst_frame_); if (src_channels == 1) SetMonoFrame(dst_ch1, dst_sample_rate_hz, &golden_frame_); else if (src_channels == 2) SetMonoFrame(dst_stereo_to_mono, dst_sample_rate_hz, &golden_frame_); else SetMonoFrame(dst_quad_to_mono, dst_sample_rate_hz, &golden_frame_); } else { SetStereoFrame(0, 0, dst_sample_rate_hz, &dst_frame_); if (src_channels == 1) SetStereoFrame(dst_ch1, dst_ch1, dst_sample_rate_hz, &golden_frame_); else if (src_channels == 2) SetStereoFrame(dst_ch1, dst_ch2, dst_sample_rate_hz, &golden_frame_); else SetStereoFrame(dst_quad_to_stereo_ch1, dst_quad_to_stereo_ch2, dst_sample_rate_hz, &golden_frame_); } // The sinc resampler has a known delay, which we compute here. Multiplying by // two gives us a crude maximum for any resampling, as the old resampler // typically (but not always) has lower delay. static const size_t kInputKernelDelaySamples = 16; const size_t max_delay = static_cast( static_cast(dst_sample_rate_hz) / src_sample_rate_hz * kInputKernelDelaySamples * dst_channels * 2); printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later. src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz); RemixAndResample(src_frame_, &resampler, &dst_frame_); if (src_sample_rate_hz == 96000 && dst_sample_rate_hz <= 11025) { // The sinc resampler gives poor SNR at this extreme conversion, but we // expect to see this rarely in practice. EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 14.0f); } else { EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 46.0f); } } TEST_F(UtilityTest, RemixAndResampleCopyFrameSucceeds) { // Stereo -> stereo. SetStereoFrame(10, 10, &src_frame_); SetStereoFrame(0, 0, &dst_frame_); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(src_frame_, dst_frame_); // Mono -> mono. SetMonoFrame(20, &src_frame_); SetMonoFrame(0, &dst_frame_); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(src_frame_, dst_frame_); } TEST_F(UtilityTest, RemixAndResampleMixingOnlySucceeds) { // Stereo -> mono. SetStereoFrame(0, 0, &dst_frame_); SetMonoFrame(10, &src_frame_); SetStereoFrame(10, 10, &golden_frame_); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(dst_frame_, golden_frame_); // Mono -> stereo. SetMonoFrame(0, &dst_frame_); SetStereoFrame(10, 20, &src_frame_); SetMonoFrame(15, &golden_frame_); RemixAndResample(src_frame_, &resampler_, &dst_frame_); VerifyFramesAreEqual(golden_frame_, dst_frame_); } TEST_F(UtilityTest, RemixAndResampleSucceeds) { const int kSampleRates[] = {8000, 11025, 16000, 22050, 32000, 44100, 48000, 96000}; const int kSrcChannels[] = {1, 2, 4}; const int kDstChannels[] = {1, 2}; for (int src_rate : kSampleRates) { for (int dst_rate : kSampleRates) { for (size_t src_channels : kSrcChannels) { for (size_t dst_channels : kDstChannels) { RunResampleTest(src_channels, src_rate, dst_channels, dst_rate); } } } } } } // namespace } // namespace voe } // namespace webrtc