# Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import("//build/config/clang/clang.gni") import("//build/config/compiler/compiler.gni") import("//build/config/rust.gni") import("//build/config/sanitizers/sanitizers.gni") import("//build/config/win/visual_studio_version.gni") import("//build/toolchain/cc_wrapper.gni") import("//build/toolchain/goma.gni") import("//build/toolchain/rbe.gni") import("//build/toolchain/toolchain.gni") # Should only be running on Windows. assert(is_win) # Setup the Visual Studio state. # # Its arguments are the VS path and the compiler wrapper tool. It will write # "environment.x86" and "environment.x64" to the build directory and return a # list to us. # This tool will is used as a wrapper for various commands below. tool_wrapper_path = rebase_path("tool_wrapper.py", root_build_dir) if (use_rbe) { goma_prefix = "" rbe_prefix = "${rbe_bin_dir}/rewrapper -cfg=${rbe_cc_cfg_file} -exec_root=${rbe_exec_root} " clang_prefix = rbe_prefix } else if (use_goma) { if (host_os == "win") { goma_prefix = "$goma_dir/gomacc.exe " } else { goma_prefix = "$goma_dir/gomacc " } clang_prefix = goma_prefix } else { goma_prefix = "" if (cc_wrapper != "") { clang_prefix = cc_wrapper + " " } else { clang_prefix = "" } } # Copy the VS runtime DLL for the default toolchain to the root build directory # so things will run. if (current_toolchain == default_toolchain) { if (is_debug) { configuration_name = "Debug" } else { configuration_name = "Release" } exec_script("../../vs_toolchain.py", [ "copy_dlls", rebase_path(root_build_dir), configuration_name, target_cpu, ]) } if (host_os == "win") { clang_cl = "clang-cl.exe" } else { clang_cl = "clang-cl" } # Parameters: # environment: File name of environment file. # # You would also define a toolchain_args variable with at least these set: # target_cpu: target_cpu to pass as a build arg # current_os: current_os to pass as a build arg template("msvc_toolchain") { toolchain(target_name) { # When invoking this toolchain not as the default one, these args will be # passed to the build. They are ignored when this is the default toolchain. assert(defined(invoker.toolchain_args)) toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } # This value needs to be passed through unchanged. host_toolchain = host_toolchain } # Make these apply to all tools below. lib_switch = "" lib_dir_switch = "/LIBPATH:" # Object files go in this directory. object_subdir = "{{target_out_dir}}/{{label_name}}" env = invoker.environment cl = invoker.cl if (use_lld) { if (host_os == "win") { lld_link = "lld-link.exe" } else { lld_link = "lld-link" } prefix = rebase_path("$clang_base_path/bin", root_build_dir) # lld-link includes a replacement for lib.exe that can produce thin # archives and understands bitcode (for lto builds). link = "$prefix/$lld_link" if (host_os == "win") { # Flip the slashes so that copy/paste of the commands works. link = string_replace(link, "/", "\\") } lib = "$link /lib" if (host_os != "win") { # See comment adding --rsp-quoting to $cl above for more information. link = "$link --rsp-quoting=posix" } } else { lib = "lib.exe" link = "link.exe" } # If possible, pass system includes as flags to the compiler. When that's # not possible, load a full environment file (containing %INCLUDE% and # %PATH%) -- e.g. 32-bit MSVS builds require %PATH% to be set and just # passing in a list of include directories isn't enough. if (defined(invoker.sys_include_flags)) { env_wrapper = "" sys_include_flags = "${invoker.sys_include_flags} " # Note trailing space. } else { # clang-cl doesn't need this env hoop, so omit it there. assert((defined(toolchain_args.is_clang) && !toolchain_args.is_clang) || !is_clang) env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. sys_include_flags = "" } # ninja does not have -t msvc other than windows, and lld doesn't depend on # mt.exe in PATH on non-Windows, so it's not needed there anyways. if (host_os != "win") { linker_wrapper = "" sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space. } else if (defined(invoker.sys_lib_flags)) { # Invoke ninja as wrapper instead of tool wrapper, because python # invocation requires higher cpu usage compared to ninja invocation, and # the python wrapper is only needed to work around link.exe problems. # TODO(thakis): Remove wrapper once lld-link can merge manifests without # relying on mt.exe being in %PATH% on Windows, https://crbug.com/872740 linker_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space. } else { # Note trailing space: linker_wrapper = "$python_path $tool_wrapper_path link-wrapper $env False " sys_lib_flags = "" } if (defined(toolchain_args.use_clang_coverage)) { toolchain_use_clang_coverage = toolchain_args.use_clang_coverage } else { toolchain_use_clang_coverage = use_clang_coverage } if (toolchain_use_clang_coverage) { assert(toolchain_args.is_clang, "use_clang_coverage should only be used with Clang") if (defined(toolchain_args.coverage_instrumentation_input_file)) { toolchain_coverage_instrumentation_input_file = toolchain_args.coverage_instrumentation_input_file } else { toolchain_coverage_instrumentation_input_file = coverage_instrumentation_input_file } coverage_wrapper = rebase_path("//build/toolchain/clang_code_coverage_wrapper.py", root_build_dir) coverage_wrapper = coverage_wrapper + " --target-os=" + target_os if (toolchain_coverage_instrumentation_input_file != "") { coverage_wrapper = coverage_wrapper + " --files-to-instrument=" + rebase_path(toolchain_coverage_instrumentation_input_file, root_build_dir) } coverage_wrapper = "$python_path " + coverage_wrapper + " " } else { coverage_wrapper = "" } # Disabled with cc_wrapper because of https://github.com/mozilla/sccache/issues/1013 if (toolchain_args.is_clang && cc_wrapper == "") { # This flag omits system includes from /showIncludes output, to reduce the # amount of data to parse and store in .ninja_deps. We do this on non-Windows too, # and already make sure rebuilds after win sdk / libc++ / clang header updates happen via # changing commandline flags. show_includes = "/showIncludes:user" } else { show_includes = "/showIncludes" } tool("cc") { precompiled_header_type = "msvc" pdbname = "{{target_out_dir}}/{{label_name}}_c.pdb" # Label names may have spaces in them so the pdbname must be quoted. The # source and output don't need to be quoted because GN knows they're a # full file name and will quote automatically when necessary. depsformat = "msvc" description = "CC {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj" ] # Note that the code coverage wrapper scripts assumes that {{source}} # comes immediately after /c. command = "$coverage_wrapper$env_wrapper$cl /c {{source}} /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} /Fo{{output}} /Fd\"$pdbname\"" } tool("cxx") { precompiled_header_type = "msvc" # The PDB name needs to be different between C and C++ compiled files. pdbname = "{{target_out_dir}}/{{label_name}}_cc.pdb" # See comment in CC tool about quoting. depsformat = "msvc" description = "CXX {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj" ] # Note that the code coverage wrapper scripts assumes that {{source}} # comes immediately after /c. command = "$coverage_wrapper$env_wrapper$cl /c {{source}} /Fo{{output}} /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} /Fd\"$pdbname\"" } tool("rc") { command = "$python_path $tool_wrapper_path rc-wrapper $env rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}" depsformat = "msvc" outputs = [ "$object_subdir/{{source_name_part}}.res" ] description = "RC {{output}}" } tool("asm") { is_msvc_assembler = true if (toolchain_args.target_cpu == "arm64") { if (is_clang) { prefix = rebase_path("$clang_base_path/bin", root_build_dir) ml = "${clang_prefix}${prefix}/${clang_cl} --target=arm64-windows" if (host_os == "win") { # Flip the slashes so that copy/paste of the command works. ml = string_replace(ml, "/", "\\") } ml += " -c -o{{output}}" is_msvc_assembler = false } else { # Only affects Arm builds with is_clang = false, implemented for building # V8 for Windows on Arm systems with the MSVC toolchain. ml = "armasm64.exe" } } else { # x86/x64 builds always use the MSVC assembler. if (toolchain_args.target_cpu == "x64") { ml = "ml64.exe" } else { ml = "ml.exe" } } if (is_msvc_assembler) { ml += " /nologo /Fo{{output}}" # Suppress final-stage linking on x64/x86 builds. (Armasm64 does not # require /c because it doesn't support linking.) if (toolchain_args.target_cpu != "arm64") { ml += " /c" } if (use_lld) { # Wrap ml(64).exe with a script that makes its output deterministic. # It's lld only because the script zaps obj Timestamp which # link.exe /incremental looks at. # TODO(https://crbug.com/762167): If we end up writing an llvm-ml64, # make sure it has deterministic output (maybe with /Brepro or # something) and remove this wrapper. ml_py = rebase_path("ml.py", root_build_dir) ml = "$python_path $ml_py $ml" } } if (toolchain_args.target_cpu != "arm64" || is_clang) { command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{defines}} {{include_dirs}} {{asmflags}} {{source}}" } else { # armasm64.exe does not support definitions passed via the command line. # (Fortunately, they're not needed for compiling the V8 snapshot, which # is the only time this assembler is required.) command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{include_dirs}} {{asmflags}} {{source}}" } description = "ASM {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj" ] } if (toolchain_has_rust) { tool("rust_staticlib") { rust_outfile = "{{target_out_dir}}/{{crate_name}}.lib" depfile = "{{crate_name}}.d" command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile" description = "RUST $rust_outfile" outputs = [ rust_outfile ] } tool("rust_rlib") { rust_outfile = "{{target_out_dir}}/lib{{crate_name}}.rlib" depfile = "{{crate_name}}.d" command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile" description = "RUST $rust_outfile" outputs = [ rust_outfile ] } if (rustc_can_link) { tool("rust_bin") { rust_outfile = "{{root_out_dir}}/{{crate_name}}.exe" depfile = "{{crate_name}}.d" command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile" description = "RUST $rust_outfile" outputs = [ rust_outfile ] } tool("rust_cdylib") { rust_outfile = "{{target_out_dir}}/lib{{crate_name}}.dll" depfile = "{{crate_name}}.d" command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile" description = "RUST $rust_outfile" outputs = [ rust_outfile ] } tool("rust_macro") { rust_outfile = "{{target_out_dir}}/lib{{crate_name}}.dll" depfile = "{{crate_name}}.d" command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile" description = "RUST $rust_outfile" outputs = [ rust_outfile ] } } } tool("alink") { rspfile = "{{output}}.rsp" command = "$linker_wrapper$lib /OUT:{{output}} /nologo ${sys_lib_flags}{{arflags}} @$rspfile" description = "LIB {{output}}" outputs = [ # Ignore {{output_extension}} and always use .lib, there's no reason to # allow targets to override this extension on Windows. "{{output_dir}}/{{target_output_name}}.lib", ] default_output_extension = ".lib" default_output_dir = "{{target_out_dir}}" # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{inputs_newline}}" } tool("solink") { # E.g. "foo.dll": dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" libname = "${dllname}.lib" # e.g. foo.dll.lib pdbname = "${dllname}.pdb" rspfile = "${dllname}.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link /OUT:$dllname /nologo ${sys_lib_flags}/IMPLIB:$libname /DLL /PDB:$pdbname @$rspfile" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "LINK(DLL) {{output}}" outputs = [ dllname, libname, pdbname, ] link_output = libname depend_output = libname runtime_outputs = [ dllname, pdbname, ] # Since the above commands only updates the .lib file when it changes, ask # Ninja to check if the timestamp actually changed to know if downstream # dependencies should be recompiled. restat = true # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}} {{rlibs}}" } tool("solink_module") { # E.g. "foo.dll": dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "${dllname}.pdb" rspfile = "${dllname}.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link /OUT:$dllname /nologo ${sys_lib_flags}/DLL /PDB:$pdbname @$rspfile" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "LINK_MODULE(DLL) {{output}}" outputs = [ dllname, pdbname, ] runtime_outputs = outputs # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}} {{rlibs}}" } tool("link") { exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "$exename.pdb" rspfile = "$exename.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link /OUT:$exename /nologo ${sys_lib_flags} /PDB:$pdbname @$rspfile" default_output_extension = ".exe" default_output_dir = "{{root_out_dir}}" description = "LINK {{output}}" outputs = [ exename, pdbname, ] runtime_outputs = outputs # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{inputs_newline}} {{libs}} {{solibs}} {{ldflags}} {{rlibs}}" } # These two are really entirely generic, but have to be repeated in # each toolchain because GN doesn't allow a template to be used here. # See //build/toolchain/toolchain.gni for details. tool("stamp") { command = stamp_command description = stamp_description pool = "//build/toolchain:action_pool($default_toolchain)" } tool("copy") { command = copy_command description = copy_description pool = "//build/toolchain:action_pool($default_toolchain)" } tool("action") { pool = "//build/toolchain:action_pool($default_toolchain)" } } } template("win_toolchains") { assert(defined(invoker.toolchain_arch)) toolchain_arch = invoker.toolchain_arch win_toolchain_data = exec_script("setup_toolchain.py", [ visual_studio_path, windows_sdk_path, visual_studio_runtime_dirs, "win", toolchain_arch, "environment." + toolchain_arch, ], "scope") # The toolchain using MSVC only makes sense when not doing cross builds. # Chromium exclusively uses the win_clang_ toolchain below, but V8 and # WebRTC still use this MSVC toolchain in some cases. if (host_os == "win") { msvc_toolchain(target_name) { environment = "environment." + toolchain_arch cl = "${goma_prefix}\"${win_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = false use_clang_coverage = false current_os = "win" target_cpu = "arm64" } } } msvc_toolchain("win_clang_" + target_name) { environment = "environment." + toolchain_arch prefix = rebase_path("$clang_base_path/bin", root_build_dir) cl = "${clang_prefix}$prefix/${clang_cl}" _clang_lib_dir = rebase_path("$clang_base_path/lib/clang/$clang_version/lib/windows", root_build_dir) if (host_os == "win") { # Flip the slashes so that copy/paste of the command works. cl = string_replace(cl, "/", "\\") # And to match the other -libpath flags. _clang_lib_dir = string_replace(_clang_lib_dir, "/", "\\") } sys_include_flags = "${win_toolchain_data.include_flags_imsvc}" sys_lib_flags = "-libpath:$_clang_lib_dir ${win_toolchain_data.libpath_flags}" toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = true current_os = "win" target_cpu = "arm64" } } } if (target_cpu == "x86" || target_cpu == "x64") { win_toolchains("x86") { toolchain_arch = "x86" } win_toolchains("x64") { toolchain_arch = "x64" } } if (target_cpu == "arm64") { win_toolchains("arm64") { toolchain_arch = "arm64" } win_toolchains(host_cpu) { toolchain_arch = host_cpu } } # The nacl_win64 toolchain is nearly identical to the plain x64 toolchain. # It's used solely for building nacl64.exe (//components/nacl/broker:nacl64). # The only reason it's a separate toolchain is so that it can force # is_component_build to false in the toolchain_args() block, because # building nacl64.exe in component style does not work. win_toolchains("nacl_win64") { toolchain_arch = "x64" toolchain_args = { is_component_build = false } } # WinUWP toolchains. Only define these when targeting them. if (target_os == "winuwp") { assert(target_cpu == "x64" || target_cpu == "x86" || target_cpu == "arm" || target_cpu == "arm64") store_cpu_toolchain_data = exec_script("setup_toolchain.py", [ visual_studio_path, windows_sdk_path, visual_studio_runtime_dirs, target_os, target_cpu, "environment.store_" + target_cpu, ], "scope") msvc_toolchain("uwp_" + target_cpu) { environment = "environment.store_" + target_cpu cl = "${goma_prefix}\"${store_cpu_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { current_os = "winuwp" target_cpu = target_cpu is_clang = false } } }