/* * Copyright 2022 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "call/simulated_network.h" #include #include #include #include #include #include "absl/algorithm/container.h" #include "api/test/simulated_network.h" #include "api/units/data_rate.h" #include "api/units/time_delta.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { namespace { using ::testing::ElementsAre; PacketInFlightInfo PacketWithSize(size_t size) { return PacketInFlightInfo(/*size=*/size, /*send_time_us=*/0, /*packet_id=*/1); } TEST(SimulatedNetworkTest, NextDeliveryTimeIsUnknownOnEmptyNetwork) { SimulatedNetwork network = SimulatedNetwork({}); EXPECT_EQ(network.NextDeliveryTimeUs(), absl::nullopt); } TEST(SimulatedNetworkTest, EnqueueFirstPacketOnNetworkWithInfiniteCapacity) { // A packet of 1 kB that gets enqueued on a network with infinite capacity // should be ready to exit the network immediately. SimulatedNetwork network = SimulatedNetwork({}); ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(1'000))); EXPECT_EQ(network.NextDeliveryTimeUs(), 0); } TEST(SimulatedNetworkTest, EnqueueFirstPacketOnNetworkWithLimitedCapacity) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125))); EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); } TEST(SimulatedNetworkTest, EnqueuePacketsButNextDeliveryIsBasedOnFirstEnqueuedPacket) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // Enqueuing another packet after 100 us doesn't change the next delivery // time. ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/100, /*packet_id=*/2))); EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // Enqueuing another packet after 2 seconds doesn't change the next delivery // time since the first packet has not left the network yet. ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo( /*size=*/125, /*send_time_us=*/TimeDelta::Seconds(2).us(), /*packet_id=*/3))); EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); } TEST(SimulatedNetworkTest, EnqueueFailsWhenQueueLengthIsReached) { SimulatedNetwork network = SimulatedNetwork({.queue_length_packets = 1, .link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); // Until there is 1 packet in the queue, no other packets can be enqueued, // the only way to make space for new packets is calling // DequeueDeliverablePackets at a time greater than or equal to // NextDeliveryTimeUs. EXPECT_FALSE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/TimeDelta::Seconds(0.5).us(), /*packet_id=*/2))); // Even if the send_time_us is after NextDeliveryTimeUs, it is still not // possible to enqueue a new packet since the client didn't deque any packet // from the queue (in this case the client is introducing unbounded delay but // the network cannot do anything about it). EXPECT_FALSE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/TimeDelta::Seconds(2).us(), /*packet_id=*/3))); } TEST(SimulatedNetworkTest, PacketOverhead) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second, but since there is an // overhead per packet of 125 bytes, it will exit the network after 2 seconds. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1, .packet_overhead = 125}); ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125))); EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(2).us()); } TEST(SimulatedNetworkTest, DequeueDeliverablePacketsLeavesPacketsInCapacityLink) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); // Enqueue another packet of 125 bytes (this one should exit after 2 seconds). ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us(), /*packet_id=*/2))); // The first packet will exit after 1 second, so that is the next delivery // time. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // After 1 seconds, we collect the delivered packets... std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(1).us()); ASSERT_EQ(delivered_packets.size(), 1ul); EXPECT_EQ(delivered_packets[0].packet_id, 1ul); EXPECT_EQ(delivered_packets[0].receive_time_us, TimeDelta::Seconds(1).us()); // ... And after the first enqueued packet has left the network, the next // delivery time reflects the delivery time of the next packet. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(2).us()); } TEST(SimulatedNetworkTest, DequeueDeliverablePacketsAppliesConfigChangesToCapacityLink) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); const PacketInFlightInfo packet_1 = PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1); ASSERT_TRUE(network.EnqueuePacket(packet_1)); // Enqueue another packet of 125 bytes with send time 1 second so this should // exit after 2 seconds. PacketInFlightInfo packet_2 = PacketInFlightInfo(/*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us(), /*packet_id=*/2); ASSERT_TRUE(network.EnqueuePacket(packet_2)); // The first packet will exit after 1 second, so that is the next delivery // time. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // Since the link capacity changes from 1 kbps to 10 kbps, packets will take // 100 ms each to leave the network. network.SetConfig({.link_capacity_kbps = 10}); // The next delivery time doesn't change (it will be updated, if needed at // DequeueDeliverablePackets time). EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // Getting the first enqueued packet after 100 ms. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Millis(100).us()); ASSERT_EQ(delivered_packets.size(), 1ul); EXPECT_THAT(delivered_packets, ElementsAre(PacketDeliveryInfo( /*source=*/packet_1, /*receive_time_us=*/TimeDelta::Millis(100).us()))); // Getting the second enqueued packet that cannot be delivered before its send // time, hence it will be delivered after 1.1 seconds. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1100).us()); delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Millis(1100).us()); ASSERT_EQ(delivered_packets.size(), 1ul); EXPECT_THAT(delivered_packets, ElementsAre(PacketDeliveryInfo( /*source=*/packet_2, /*receive_time_us=*/TimeDelta::Millis(1100).us()))); } TEST(SimulatedNetworkTest, NetworkEmptyAfterLastPacketDequeued) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125))); // Collecting all the delivered packets ... std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(1).us()); EXPECT_EQ(delivered_packets.size(), 1ul); // ... leaves the network empty. EXPECT_EQ(network.NextDeliveryTimeUs(), absl::nullopt); } TEST(SimulatedNetworkTest, DequeueDeliverablePacketsOnLateCall) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); // Enqueue another packet of 125 bytes with send time 1 second so this should // exit after 2 seconds. ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us(), /*packet_id=*/2))); // Collecting delivered packets after 3 seconds will result in the delivery of // both the enqueued packets. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(3).us()); EXPECT_EQ(delivered_packets.size(), 2ul); } TEST(SimulatedNetworkTest, DequeueDeliverablePacketsOnEarlyCallReturnsNoPackets) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125))); // Collecting delivered packets after 0.5 seconds will result in the delivery // of 0 packets. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(0.5).us()); EXPECT_EQ(delivered_packets.size(), 0ul); // Since the first enqueued packet was supposed to exit after 1 second. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); } TEST(SimulatedNetworkTest, QueueDelayMsWithoutStandardDeviation) { // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. SimulatedNetwork network = SimulatedNetwork({.queue_delay_ms = 100, .link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket(PacketWithSize(125))); // The next delivery time is still 1 second even if there are 100 ms of // extra delay but this will be applied at DequeueDeliverablePackets time. ASSERT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // Since all packets are delayed by 100 ms, after 1 second, no packets will // exit the network. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(1).us()); EXPECT_EQ(delivered_packets.size(), 0ul); // And the updated next delivery time takes into account the extra delay of // 100 ms so the first packet in the network will be delivered after 1.1 // seconds. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Millis(1100).us()); delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Millis(1100).us()); EXPECT_EQ(delivered_packets.size(), 1ul); } TEST(SimulatedNetworkTest, QueueDelayMsWithStandardDeviationAndReorderNotAllowed) { SimulatedNetwork network = SimulatedNetwork({.queue_delay_ms = 100, .delay_standard_deviation_ms = 90, .link_capacity_kbps = 1, .allow_reordering = false}); // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); // But 3 more packets of size 1 byte are enqueued at the same time. ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/2))); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/3))); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/4))); // After 5 seconds all of them exit the network. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(5).us()); ASSERT_EQ(delivered_packets.size(), 4ul); // And they are still in order even if the delay was applied. EXPECT_EQ(delivered_packets[0].packet_id, 1ul); EXPECT_EQ(delivered_packets[1].packet_id, 2ul); EXPECT_GE(delivered_packets[1].receive_time_us, delivered_packets[0].receive_time_us); EXPECT_EQ(delivered_packets[2].packet_id, 3ul); EXPECT_GE(delivered_packets[2].receive_time_us, delivered_packets[1].receive_time_us); EXPECT_EQ(delivered_packets[3].packet_id, 4ul); EXPECT_GE(delivered_packets[3].receive_time_us, delivered_packets[2].receive_time_us); } TEST(SimulatedNetworkTest, QueueDelayMsWithStandardDeviationAndReorderAllowed) { SimulatedNetwork network = SimulatedNetwork({.queue_delay_ms = 100, .delay_standard_deviation_ms = 90, .link_capacity_kbps = 1, .allow_reordering = true}, /*random_seed=*/1); // A packet of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network in 1 second. ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); // But 3 more packets of size 1 byte are enqueued at the same time. ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/2))); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/3))); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/1, /*send_time_us=*/0, /*packet_id=*/4))); // After 5 seconds all of them exit the network. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(5).us()); ASSERT_EQ(delivered_packets.size(), 4ul); // And they have been reordered accorting to the applied extra delay. EXPECT_EQ(delivered_packets[0].packet_id, 3ul); EXPECT_EQ(delivered_packets[1].packet_id, 1ul); EXPECT_GE(delivered_packets[1].receive_time_us, delivered_packets[0].receive_time_us); EXPECT_EQ(delivered_packets[2].packet_id, 2ul); EXPECT_GE(delivered_packets[2].receive_time_us, delivered_packets[1].receive_time_us); EXPECT_EQ(delivered_packets[3].packet_id, 4ul); EXPECT_GE(delivered_packets[3].receive_time_us, delivered_packets[2].receive_time_us); } TEST(SimulatedNetworkTest, PacketLoss) { // On a network with 50% probablility of packet loss ... SimulatedNetwork network = SimulatedNetwork({.loss_percent = 50}); // Enqueueing 8 packets ... for (int i = 0; i < 8; i++) { ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo( /*size=*/1, /*send_time_us=*/0, /*packet_id=*/i + 1))); } std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(5).us()); EXPECT_EQ(delivered_packets.size(), 8ul); // Results in the loss of 4 of them. int lost_packets = 0; for (const auto& packet : delivered_packets) { if (packet.receive_time_us == PacketDeliveryInfo::kNotReceived) { lost_packets++; } } EXPECT_EQ(lost_packets, 4); } TEST(SimulatedNetworkTest, PacketLossBurst) { // On a network with 50% probablility of packet loss and an average burst loss // length of 100 ... SimulatedNetwork network = SimulatedNetwork( {.loss_percent = 50, .avg_burst_loss_length = 100}, /*random_seed=*/1); // Enqueueing 20 packets ... for (int i = 0; i < 20; i++) { ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo( /*size=*/1, /*send_time_us=*/0, /*packet_id=*/i + 1))); } std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(5).us()); EXPECT_EQ(delivered_packets.size(), 20ul); // Results in a burst of lost packets after the first packet lost. // With the current random seed, the first 12 are not lost, while the // last 8 are. int current_packet = 0; for (const auto& packet : delivered_packets) { if (current_packet < 12) { EXPECT_NE(packet.receive_time_us, PacketDeliveryInfo::kNotReceived); current_packet++; } else { EXPECT_EQ(packet.receive_time_us, PacketDeliveryInfo::kNotReceived); current_packet++; } } } TEST(SimulatedNetworkTest, PauseTransmissionUntil) { // 3 packets of 125 bytes that gets enqueued on a network with 1 kbps capacity // should be ready to exit the network after 1, 2 and 3 seconds respectively. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/1))); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/2))); ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/3))); ASSERT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(1).us()); // The network gets paused for 5 seconds, which means that the first packet // can exit after 5 seconds instead of 1 second. network.PauseTransmissionUntil(TimeDelta::Seconds(5).us()); // No packets after 1 second. std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(1).us()); EXPECT_EQ(delivered_packets.size(), 0ul); EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(5).us()); // The first packet exits after 5 seconds. delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(5).us()); EXPECT_EQ(delivered_packets.size(), 1ul); // After the first packet is exited, the next delivery time reflects the // delivery time of the next packet which accounts for the network pause. EXPECT_EQ(network.NextDeliveryTimeUs(), TimeDelta::Seconds(6).us()); // And 2 seconds after the exit of the first enqueued packet, the following 2 // packets are also delivered. delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(7).us()); EXPECT_EQ(delivered_packets.size(), 2ul); } TEST(SimulatedNetworkTest, CongestedNetworkRespectsLinkCapacity) { SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); for (size_t i = 0; i < 1'000; ++i) { ASSERT_TRUE(network.EnqueuePacket( PacketInFlightInfo(/*size=*/125, /*send_time_us=*/0, /*packet_id=*/i))); } PacketDeliveryInfo last_delivered_packet{ PacketInFlightInfo(/*size=*/0, /*send_time_us=*/0, /*packet_id=*/0), 0}; while (network.NextDeliveryTimeUs().has_value()) { std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/network.NextDeliveryTimeUs().value()); if (!delivered_packets.empty()) { last_delivered_packet = delivered_packets.back(); } } // 1000 packets of 1000 bits each will take 1000 seconds to exit a 1 kpbs // network. EXPECT_EQ(last_delivered_packet.receive_time_us, TimeDelta::Seconds(1000).us()); EXPECT_EQ(last_delivered_packet.packet_id, 999ul); } TEST(SimulatedNetworkTest, EnqueuePacketWithSubSecondNonMonotonicBehaviour) { // On multi-core systems, different threads can experience sub-millisecond non // monothonic behaviour when running on different cores. This test checks that // when a non monotonic packet enqueue, the network continues to work and the // out of order packet is sent anyway. SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo( /*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us(), /*packet_id=*/0))); ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo( /*size=*/125, /*send_time_us=*/TimeDelta::Seconds(1).us() - 1, /*packet_id=*/1))); std::vector delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(2).us()); ASSERT_EQ(delivered_packets.size(), 1ul); EXPECT_EQ(delivered_packets[0].packet_id, 0ul); EXPECT_EQ(delivered_packets[0].receive_time_us, TimeDelta::Seconds(2).us()); delivered_packets = network.DequeueDeliverablePackets( /*receive_time_us=*/TimeDelta::Seconds(3).us()); ASSERT_EQ(delivered_packets.size(), 1ul); EXPECT_EQ(delivered_packets[0].packet_id, 1ul); EXPECT_EQ(delivered_packets[0].receive_time_us, TimeDelta::Seconds(3).us()); } // TODO(bugs.webrtc.org/14525): Re-enable when the DCHECK will be uncommented // and the non-monotonic events on real time clock tests is solved/understood. // TEST(SimulatedNetworkDeathTest, EnqueuePacketExpectMonotonicSendTime) { // SimulatedNetwork network = SimulatedNetwork({.link_capacity_kbps = 1}); // ASSERT_TRUE(network.EnqueuePacket(PacketInFlightInfo( // /*size=*/125, /*send_time_us=*/2'000'000, /*packet_id=*/0))); // EXPECT_DEATH_IF_SUPPORTED(network.EnqueuePacket(PacketInFlightInfo( // /*size=*/125, /*send_time_us=*/900'000, /*packet_id=*/1)), ""); // } } // namespace } // namespace webrtc