/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for DecisionLogic class and derived classes. #include "modules/audio_coding/neteq/decision_logic.h" #include "api/neteq/neteq_controller.h" #include "api/neteq/tick_timer.h" #include "modules/audio_coding/neteq/buffer_level_filter.h" #include "modules/audio_coding/neteq/delay_manager.h" #include "modules/audio_coding/neteq/mock/mock_buffer_level_filter.h" #include "modules/audio_coding/neteq/mock/mock_delay_manager.h" #include "test/field_trial.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kSampleRate = 8000; constexpr int kSamplesPerMs = kSampleRate / 1000; constexpr int kOutputSizeSamples = kSamplesPerMs * 10; constexpr int kMinTimescaleInterval = 5; NetEqController::NetEqStatus CreateNetEqStatus(NetEq::Mode last_mode, int current_delay_ms) { NetEqController::NetEqStatus status; status.play_dtmf = false; status.last_mode = last_mode; status.target_timestamp = 1234; status.generated_noise_samples = 0; status.expand_mutefactor = 0; status.packet_buffer_info.num_samples = current_delay_ms * kSamplesPerMs; status.packet_buffer_info.span_samples = current_delay_ms * kSamplesPerMs; status.packet_buffer_info.span_samples_no_dtx = current_delay_ms * kSamplesPerMs; status.packet_buffer_info.dtx_or_cng = false; status.next_packet = {status.target_timestamp, false, false}; return status; } using ::testing::Return; } // namespace class DecisionLogicTest : public ::testing::Test { protected: DecisionLogicTest() { test::ScopedFieldTrials trials( "WebRTC-Audio-NetEqDecisionLogicConfig/cng_timeout_ms:1000/"); NetEqController::Config config; config.tick_timer = &tick_timer_; config.allow_time_stretching = true; auto delay_manager = std::make_unique( DelayManager::Config(), config.tick_timer); mock_delay_manager_ = delay_manager.get(); auto buffer_level_filter = std::make_unique(); mock_buffer_level_filter_ = buffer_level_filter.get(); decision_logic_ = std::make_unique( config, std::move(delay_manager), std::move(buffer_level_filter)); decision_logic_->SetSampleRate(kSampleRate, kOutputSizeSamples); } TickTimer tick_timer_; std::unique_ptr decision_logic_; MockDelayManager* mock_delay_manager_; MockBufferLevelFilter* mock_buffer_level_filter_; }; TEST_F(DecisionLogicTest, NormalOperation) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(100)); EXPECT_CALL(*mock_buffer_level_filter_, filtered_current_level()) .WillRepeatedly(Return(90 * kSamplesPerMs)); bool reset_decoder = false; tick_timer_.Increment(kMinTimescaleInterval + 1); EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kNormal, 100), &reset_decoder), NetEq::Operation::kNormal); EXPECT_FALSE(reset_decoder); } TEST_F(DecisionLogicTest, Accelerate) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(100)); EXPECT_CALL(*mock_buffer_level_filter_, filtered_current_level()) .WillRepeatedly(Return(110 * kSamplesPerMs)); bool reset_decoder = false; tick_timer_.Increment(kMinTimescaleInterval + 1); EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kNormal, 100), &reset_decoder), NetEq::Operation::kAccelerate); EXPECT_FALSE(reset_decoder); } TEST_F(DecisionLogicTest, FastAccelerate) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(100)); EXPECT_CALL(*mock_buffer_level_filter_, filtered_current_level()) .WillRepeatedly(Return(400 * kSamplesPerMs)); bool reset_decoder = false; tick_timer_.Increment(kMinTimescaleInterval + 1); EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kNormal, 100), &reset_decoder), NetEq::Operation::kFastAccelerate); EXPECT_FALSE(reset_decoder); } TEST_F(DecisionLogicTest, PreemptiveExpand) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(100)); EXPECT_CALL(*mock_buffer_level_filter_, filtered_current_level()) .WillRepeatedly(Return(50 * kSamplesPerMs)); bool reset_decoder = false; tick_timer_.Increment(kMinTimescaleInterval + 1); EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kNormal, 100), &reset_decoder), NetEq::Operation::kPreemptiveExpand); EXPECT_FALSE(reset_decoder); } TEST_F(DecisionLogicTest, DecelerationTargetLevelOffset) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(500)); EXPECT_CALL(*mock_buffer_level_filter_, filtered_current_level()) .WillRepeatedly(Return(400 * kSamplesPerMs)); bool reset_decoder = false; tick_timer_.Increment(kMinTimescaleInterval + 1); EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kNormal, 400), &reset_decoder), NetEq::Operation::kPreemptiveExpand); EXPECT_FALSE(reset_decoder); } TEST_F(DecisionLogicTest, PostponeDecodeAfterExpand) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(500)); // Below 50% target delay threshold. bool reset_decoder = false; EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kExpand, 200), &reset_decoder), NetEq::Operation::kExpand); EXPECT_FALSE(reset_decoder); // Above 50% target delay threshold. EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kExpand, 250), &reset_decoder), NetEq::Operation::kNormal); EXPECT_FALSE(reset_decoder); } TEST_F(DecisionLogicTest, TimeStrechComfortNoise) { EXPECT_CALL(*mock_delay_manager_, TargetDelayMs()) .WillRepeatedly(Return(500)); { bool reset_decoder = false; // Below target window. auto status = CreateNetEqStatus(NetEq::Mode::kCodecInternalCng, 400); status.generated_noise_samples = 400 * kSamplesPerMs; status.next_packet->timestamp = status.target_timestamp + 400 * kSamplesPerMs; EXPECT_EQ(decision_logic_->GetDecision(status, &reset_decoder), NetEq::Operation::kCodecInternalCng); EXPECT_FALSE(reset_decoder); } { bool reset_decoder = false; // Above target window. auto status = CreateNetEqStatus(NetEq::Mode::kCodecInternalCng, 600); status.generated_noise_samples = 200 * kSamplesPerMs; status.next_packet->timestamp = status.target_timestamp + 400 * kSamplesPerMs; EXPECT_EQ(decision_logic_->GetDecision(status, &reset_decoder), NetEq::Operation::kNormal); EXPECT_FALSE(reset_decoder); // The buffer level filter should be adjusted with the number of samples // that was skipped. int timestamp_leap = status.next_packet->timestamp - status.target_timestamp - status.generated_noise_samples; EXPECT_CALL(*mock_buffer_level_filter_, Update(400 * kSamplesPerMs, timestamp_leap)); EXPECT_EQ(decision_logic_->GetDecision( CreateNetEqStatus(NetEq::Mode::kNormal, 400), &reset_decoder), NetEq::Operation::kNormal); EXPECT_FALSE(reset_decoder); } } TEST_F(DecisionLogicTest, CngTimeout) { auto status = CreateNetEqStatus(NetEq::Mode::kCodecInternalCng, 0); status.next_packet = absl::nullopt; status.generated_noise_samples = kSamplesPerMs * 500; bool reset_decoder = false; EXPECT_EQ(decision_logic_->GetDecision(status, &reset_decoder), NetEq::Operation::kCodecInternalCng); status.generated_noise_samples = kSamplesPerMs * 1010; EXPECT_EQ(decision_logic_->GetDecision(status, &reset_decoder), NetEq::Operation::kExpand); } } // namespace webrtc