/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_device/include/audio_device.h" #include #include #include #include #include #include "absl/types/optional.h" #include "api/array_view.h" #include "api/scoped_refptr.h" #include "api/sequence_checker.h" #include "api/task_queue/default_task_queue_factory.h" #include "api/task_queue/task_queue_factory.h" #include "modules/audio_device/audio_device_impl.h" #include "modules/audio_device/include/mock_audio_transport.h" #include "rtc_base/arraysize.h" #include "rtc_base/buffer.h" #include "rtc_base/event.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/race_checker.h" #include "rtc_base/synchronization/mutex.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/time_utils.h" #include "test/gmock.h" #include "test/gtest.h" #ifdef WEBRTC_WIN #include "modules/audio_device/include/audio_device_factory.h" #include "modules/audio_device/win/core_audio_utility_win.h" #include "rtc_base/win/scoped_com_initializer.h" #endif // WEBRTC_WIN using ::testing::_; using ::testing::AtLeast; using ::testing::Ge; using ::testing::Invoke; using ::testing::Mock; using ::testing::NiceMock; using ::testing::NotNull; namespace webrtc { namespace { // Using a #define for AUDIO_DEVICE since we will call *different* versions of // the ADM functions, depending on the ID type. #if defined(WEBRTC_WIN) #define AUDIO_DEVICE_ID (AudioDeviceModule::WindowsDeviceType::kDefaultDevice) #else #define AUDIO_DEVICE_ID (0u) #endif // defined(WEBRTC_WIN) // #define ENABLE_DEBUG_PRINTF #ifdef ENABLE_DEBUG_PRINTF #define PRINTD(...) fprintf(stderr, __VA_ARGS__); #else #define PRINTD(...) ((void)0) #endif #define PRINT(...) fprintf(stderr, __VA_ARGS__); // Don't run these tests if audio-related requirements are not met. #define SKIP_TEST_IF_NOT(requirements_satisfied) \ do { \ if (!requirements_satisfied) { \ GTEST_SKIP() << "Skipped. No audio device found."; \ } \ } while (false) // Number of callbacks (input or output) the tests waits for before we set // an event indicating that the test was OK. static constexpr size_t kNumCallbacks = 10; // Max amount of time we wait for an event to be set while counting callbacks. static constexpr TimeDelta kTestTimeOut = TimeDelta::Seconds(10); // Average number of audio callbacks per second assuming 10ms packet size. static constexpr size_t kNumCallbacksPerSecond = 100; // Run the full-duplex test during this time (unit is in seconds). static constexpr TimeDelta kFullDuplexTime = TimeDelta::Seconds(5); // Length of round-trip latency measurements. Number of deteced impulses // shall be kImpulseFrequencyInHz * kMeasureLatencyTime - 1 since the // last transmitted pulse is not used. static constexpr TimeDelta kMeasureLatencyTime = TimeDelta::Seconds(10); // Sets the number of impulses per second in the latency test. static constexpr size_t kImpulseFrequencyInHz = 1; // Utilized in round-trip latency measurements to avoid capturing noise samples. static constexpr int kImpulseThreshold = 1000; enum class TransportType { kInvalid, kPlay, kRecord, kPlayAndRecord, }; // Interface for processing the audio stream. Real implementations can e.g. // run audio in loopback, read audio from a file or perform latency // measurements. class AudioStream { public: virtual void Write(rtc::ArrayView source) = 0; virtual void Read(rtc::ArrayView destination) = 0; virtual ~AudioStream() = default; }; // Converts index corresponding to position within a 10ms buffer into a // delay value in milliseconds. // Example: index=240, frames_per_10ms_buffer=480 => 5ms as output. int IndexToMilliseconds(size_t index, size_t frames_per_10ms_buffer) { return rtc::checked_cast( 10.0 * (static_cast(index) / frames_per_10ms_buffer) + 0.5); } } // namespace // Simple first in first out (FIFO) class that wraps a list of 16-bit audio // buffers of fixed size and allows Write and Read operations. The idea is to // store recorded audio buffers (using Write) and then read (using Read) these // stored buffers with as short delay as possible when the audio layer needs // data to play out. The number of buffers in the FIFO will stabilize under // normal conditions since there will be a balance between Write and Read calls. // The container is a std::list container and access is protected with a lock // since both sides (playout and recording) are driven by its own thread. // Note that, we know by design that the size of the audio buffer will not // change over time and that both sides will in most cases use the same size. class FifoAudioStream : public AudioStream { public: void Write(rtc::ArrayView source) override { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); const size_t size = [&] { MutexLock lock(&lock_); fifo_.push_back(Buffer16(source.data(), source.size())); return fifo_.size(); }(); if (size > max_size_) { max_size_ = size; } // Add marker once per second to signal that audio is active. if (write_count_++ % 100 == 0) { PRINTD("."); } written_elements_ += size; } void Read(rtc::ArrayView destination) override { MutexLock lock(&lock_); if (fifo_.empty()) { std::fill(destination.begin(), destination.end(), 0); } else { const Buffer16& buffer = fifo_.front(); if (buffer.size() == destination.size()) { // Default case where input and output uses same sample rate and // channel configuration. No conversion is needed. std::copy(buffer.begin(), buffer.end(), destination.begin()); } else if (destination.size() == 2 * buffer.size()) { // Recorded input signal in `buffer` is in mono. Do channel upmix to // match stereo output (1 -> 2). for (size_t i = 0; i < buffer.size(); ++i) { destination[2 * i] = buffer[i]; destination[2 * i + 1] = buffer[i]; } } else if (buffer.size() == 2 * destination.size()) { // Recorded input signal in `buffer` is in stereo. Do channel downmix // to match mono output (2 -> 1). for (size_t i = 0; i < destination.size(); ++i) { destination[i] = (static_cast(buffer[2 * i]) + buffer[2 * i + 1]) / 2; } } else { RTC_DCHECK_NOTREACHED() << "Required conversion is not support"; } fifo_.pop_front(); } } size_t size() const { MutexLock lock(&lock_); return fifo_.size(); } size_t max_size() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); return max_size_; } size_t average_size() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); return 0.5 + static_cast(written_elements_ / write_count_); } using Buffer16 = rtc::BufferT; mutable Mutex lock_; rtc::RaceChecker race_checker_; std::list fifo_ RTC_GUARDED_BY(lock_); size_t write_count_ RTC_GUARDED_BY(race_checker_) = 0; size_t max_size_ RTC_GUARDED_BY(race_checker_) = 0; size_t written_elements_ RTC_GUARDED_BY(race_checker_) = 0; }; // Inserts periodic impulses and measures the latency between the time of // transmission and time of receiving the same impulse. class LatencyAudioStream : public AudioStream { public: LatencyAudioStream() { // Delay thread checkers from being initialized until first callback from // respective thread. read_thread_checker_.Detach(); write_thread_checker_.Detach(); } // Insert periodic impulses in first two samples of `destination`. void Read(rtc::ArrayView destination) override { RTC_DCHECK_RUN_ON(&read_thread_checker_); if (read_count_ == 0) { PRINT("["); } read_count_++; std::fill(destination.begin(), destination.end(), 0); if (read_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) { PRINT("."); { MutexLock lock(&lock_); if (!pulse_time_) { pulse_time_ = rtc::TimeMillis(); } } constexpr int16_t impulse = std::numeric_limits::max(); std::fill_n(destination.begin(), 2, impulse); } } // Detect received impulses in `source`, derive time between transmission and // detection and add the calculated delay to list of latencies. void Write(rtc::ArrayView source) override { RTC_DCHECK_RUN_ON(&write_thread_checker_); RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); MutexLock lock(&lock_); write_count_++; if (!pulse_time_) { // Avoid detection of new impulse response until a new impulse has // been transmitted (sets `pulse_time_` to value larger than zero). return; } // Find index (element position in vector) of the max element. const size_t index_of_max = std::max_element(source.begin(), source.end()) - source.begin(); // Derive time between transmitted pulse and received pulse if the level // is high enough (removes noise). const size_t max = source[index_of_max]; if (max > kImpulseThreshold) { PRINTD("(%zu, %zu)", max, index_of_max); int64_t now_time = rtc::TimeMillis(); int extra_delay = IndexToMilliseconds(index_of_max, source.size()); PRINTD("[%d]", rtc::checked_cast(now_time - pulse_time_)); PRINTD("[%d]", extra_delay); // Total latency is the difference between transmit time and detection // tome plus the extra delay within the buffer in which we detected the // received impulse. It is transmitted at sample 0 but can be received // at sample N where N > 0. The term `extra_delay` accounts for N and it // is a value between 0 and 10ms. latencies_.push_back(now_time - *pulse_time_ + extra_delay); pulse_time_.reset(); } else { PRINTD("-"); } } size_t num_latency_values() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); return latencies_.size(); } int min_latency() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); if (latencies_.empty()) return 0; return *std::min_element(latencies_.begin(), latencies_.end()); } int max_latency() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); if (latencies_.empty()) return 0; return *std::max_element(latencies_.begin(), latencies_.end()); } int average_latency() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); if (latencies_.empty()) return 0; return 0.5 + static_cast( std::accumulate(latencies_.begin(), latencies_.end(), 0)) / latencies_.size(); } void PrintResults() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); PRINT("] "); for (auto it = latencies_.begin(); it != latencies_.end(); ++it) { PRINTD("%d ", *it); } PRINT("\n"); PRINT("[..........] [min, max, avg]=[%d, %d, %d] ms\n", min_latency(), max_latency(), average_latency()); } Mutex lock_; rtc::RaceChecker race_checker_; SequenceChecker read_thread_checker_; SequenceChecker write_thread_checker_; absl::optional pulse_time_ RTC_GUARDED_BY(lock_); std::vector latencies_ RTC_GUARDED_BY(race_checker_); size_t read_count_ RTC_GUARDED_BY(read_thread_checker_) = 0; size_t write_count_ RTC_GUARDED_BY(write_thread_checker_) = 0; }; // Mocks the AudioTransport object and proxies actions for the two callbacks // (RecordedDataIsAvailable and NeedMorePlayData) to different implementations // of AudioStreamInterface. class MockAudioTransport : public test::MockAudioTransport { public: explicit MockAudioTransport(TransportType type) : type_(type) {} ~MockAudioTransport() {} // Set default actions of the mock object. We are delegating to fake // implementation where the number of callbacks is counted and an event // is set after a certain number of callbacks. Audio parameters are also // checked. void HandleCallbacks(rtc::Event* event, AudioStream* audio_stream, int num_callbacks) { event_ = event; audio_stream_ = audio_stream; num_callbacks_ = num_callbacks; if (play_mode()) { ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _)) .WillByDefault( Invoke(this, &MockAudioTransport::RealNeedMorePlayData)); } if (rec_mode()) { ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _)) .WillByDefault( Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable)); } } // Special constructor used in manual tests where the user wants to run audio // until e.g. a keyboard key is pressed. The event flag is set to nullptr by // default since it is up to the user to stop the test. See e.g. // DISABLED_RunPlayoutAndRecordingInFullDuplexAndWaitForEnterKey(). void HandleCallbacks(AudioStream* audio_stream) { HandleCallbacks(nullptr, audio_stream, 0); } int32_t RealRecordedDataIsAvailable(const void* audio_buffer, const size_t samples_per_channel, const size_t bytes_per_frame, const size_t channels, const uint32_t sample_rate, const uint32_t total_delay_ms, const int32_t clock_drift, const uint32_t current_mic_level, const bool typing_status, uint32_t& new_mic_level) { EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks."; // Store audio parameters once in the first callback. For all other // callbacks, verify that the provided audio parameters are maintained and // that each callback corresponds to 10ms for any given sample rate. if (!record_parameters_.is_complete()) { record_parameters_.reset(sample_rate, channels, samples_per_channel); } else { EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_buffer()); EXPECT_EQ(bytes_per_frame, record_parameters_.GetBytesPerFrame()); EXPECT_EQ(channels, record_parameters_.channels()); EXPECT_EQ(static_cast(sample_rate), record_parameters_.sample_rate()); EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_10ms_buffer()); } { MutexLock lock(&lock_); rec_count_++; } // Write audio data to audio stream object if one has been injected. if (audio_stream_) { audio_stream_->Write( rtc::MakeArrayView(static_cast(audio_buffer), samples_per_channel * channels)); } // Signal the event after given amount of callbacks. if (event_ && ReceivedEnoughCallbacks()) { event_->Set(); } return 0; } int32_t RealNeedMorePlayData(const size_t samples_per_channel, const size_t bytes_per_frame, const size_t channels, const uint32_t sample_rate, void* audio_buffer, size_t& samples_out, int64_t* elapsed_time_ms, int64_t* ntp_time_ms) { EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks."; // Store audio parameters once in the first callback. For all other // callbacks, verify that the provided audio parameters are maintained and // that each callback corresponds to 10ms for any given sample rate. if (!playout_parameters_.is_complete()) { playout_parameters_.reset(sample_rate, channels, samples_per_channel); } else { EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_buffer()); EXPECT_EQ(bytes_per_frame, playout_parameters_.GetBytesPerFrame()); EXPECT_EQ(channels, playout_parameters_.channels()); EXPECT_EQ(static_cast(sample_rate), playout_parameters_.sample_rate()); EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_10ms_buffer()); } { MutexLock lock(&lock_); play_count_++; } samples_out = samples_per_channel * channels; // Read audio data from audio stream object if one has been injected. if (audio_stream_) { audio_stream_->Read(rtc::MakeArrayView( static_cast(audio_buffer), samples_per_channel * channels)); } else { // Fill the audio buffer with zeros to avoid disturbing audio. const size_t num_bytes = samples_per_channel * bytes_per_frame; std::memset(audio_buffer, 0, num_bytes); } // Signal the event after given amount of callbacks. if (event_ && ReceivedEnoughCallbacks()) { event_->Set(); } return 0; } bool ReceivedEnoughCallbacks() { bool recording_done = false; if (rec_mode()) { MutexLock lock(&lock_); recording_done = rec_count_ >= num_callbacks_; } else { recording_done = true; } bool playout_done = false; if (play_mode()) { MutexLock lock(&lock_); playout_done = play_count_ >= num_callbacks_; } else { playout_done = true; } return recording_done && playout_done; } bool play_mode() const { return type_ == TransportType::kPlay || type_ == TransportType::kPlayAndRecord; } bool rec_mode() const { return type_ == TransportType::kRecord || type_ == TransportType::kPlayAndRecord; } void ResetCallbackCounters() { MutexLock lock(&lock_); if (play_mode()) { play_count_ = 0; } if (rec_mode()) { rec_count_ = 0; } } private: Mutex lock_; TransportType type_ = TransportType::kInvalid; rtc::Event* event_ = nullptr; AudioStream* audio_stream_ = nullptr; size_t num_callbacks_ = 0; size_t play_count_ RTC_GUARDED_BY(lock_) = 0; size_t rec_count_ RTC_GUARDED_BY(lock_) = 0; AudioParameters playout_parameters_; AudioParameters record_parameters_; }; // AudioDeviceTest test fixture. // bugs.webrtc.org/9808 // Both the tests and the code under test are very old, unstaffed and not // a part of webRTC stack. // Here sanitizers make the tests hang, without providing usefull report. // So we are just disabling them, without intention to re-enable them. #if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \ defined(THREAD_SANITIZER) || defined(UNDEFINED_SANITIZER) #define MAYBE_AudioDeviceTest DISABLED_AudioDeviceTest #else #define MAYBE_AudioDeviceTest AudioDeviceTest #endif class MAYBE_AudioDeviceTest : public ::testing::TestWithParam { protected: MAYBE_AudioDeviceTest() : audio_layer_(GetParam()), task_queue_factory_(CreateDefaultTaskQueueFactory()) { rtc::LogMessage::LogToDebug(rtc::LS_INFO); // Add extra logging fields here if needed for debugging. rtc::LogMessage::LogTimestamps(); rtc::LogMessage::LogThreads(); audio_device_ = CreateAudioDevice(); EXPECT_NE(audio_device_.get(), nullptr); AudioDeviceModule::AudioLayer audio_layer; int got_platform_audio_layer = audio_device_->ActiveAudioLayer(&audio_layer); // First, ensure that a valid audio layer can be activated. if (got_platform_audio_layer != 0) { requirements_satisfied_ = false; } // Next, verify that the ADM can be initialized. if (requirements_satisfied_) { requirements_satisfied_ = (audio_device_->Init() == 0); } // Finally, ensure that at least one valid device exists in each direction. if (requirements_satisfied_) { const int16_t num_playout_devices = audio_device_->PlayoutDevices(); const int16_t num_record_devices = audio_device_->RecordingDevices(); requirements_satisfied_ = num_playout_devices > 0 && num_record_devices > 0; } if (requirements_satisfied_) { EXPECT_EQ(0, audio_device_->SetPlayoutDevice(AUDIO_DEVICE_ID)); EXPECT_EQ(0, audio_device_->InitSpeaker()); EXPECT_EQ(0, audio_device_->StereoPlayoutIsAvailable(&stereo_playout_)); EXPECT_EQ(0, audio_device_->SetStereoPlayout(stereo_playout_)); EXPECT_EQ(0, audio_device_->SetRecordingDevice(AUDIO_DEVICE_ID)); EXPECT_EQ(0, audio_device_->InitMicrophone()); // Avoid asking for input stereo support and always record in mono // since asking can cause issues in combination with remote desktop. // See https://bugs.chromium.org/p/webrtc/issues/detail?id=7397 for // details. EXPECT_EQ(0, audio_device_->SetStereoRecording(false)); } } // This is needed by all tests using MockAudioTransport, // since there is no way to unregister it. // Without Terminate(), audio_device would still accesses // the destructed mock via "webrtc_audio_module_rec_thread". // An alternative would be for the mock to outlive audio_device. void PreTearDown() { EXPECT_EQ(0, audio_device_->Terminate()); } virtual ~MAYBE_AudioDeviceTest() { if (audio_device_) { EXPECT_EQ(0, audio_device_->Terminate()); } } bool requirements_satisfied() const { return requirements_satisfied_; } rtc::Event* event() { return &event_; } AudioDeviceModule::AudioLayer audio_layer() const { return audio_layer_; } // AudioDeviceModuleForTest extends the default ADM interface with some extra // test methods. Intended for usage in tests only and requires a unique // factory method. See CreateAudioDevice() for details. const rtc::scoped_refptr& audio_device() const { return audio_device_; } rtc::scoped_refptr CreateAudioDevice() { // Use the default factory for kPlatformDefaultAudio and a special factory // CreateWindowsCoreAudioAudioDeviceModuleForTest() for kWindowsCoreAudio2. // The value of `audio_layer_` is set at construction by GetParam() and two // different layers are tested on Windows only. if (audio_layer_ == AudioDeviceModule::kPlatformDefaultAudio) { return AudioDeviceModule::CreateForTest(audio_layer_, task_queue_factory_.get()); } else if (audio_layer_ == AudioDeviceModule::kWindowsCoreAudio2) { #ifdef WEBRTC_WIN // We must initialize the COM library on a thread before we calling any of // the library functions. All COM functions in the ADM will return // CO_E_NOTINITIALIZED otherwise. com_initializer_ = std::make_unique(ScopedCOMInitializer::kMTA); EXPECT_TRUE(com_initializer_->Succeeded()); EXPECT_TRUE(webrtc_win::core_audio_utility::IsSupported()); EXPECT_TRUE(webrtc_win::core_audio_utility::IsMMCSSSupported()); return CreateWindowsCoreAudioAudioDeviceModuleForTest( task_queue_factory_.get(), true); #else return nullptr; #endif } else { return nullptr; } } void StartPlayout() { EXPECT_FALSE(audio_device()->Playing()); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); EXPECT_EQ(0, audio_device()->StartPlayout()); EXPECT_TRUE(audio_device()->Playing()); } void StopPlayout() { EXPECT_EQ(0, audio_device()->StopPlayout()); EXPECT_FALSE(audio_device()->Playing()); EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); } void StartRecording() { EXPECT_FALSE(audio_device()->Recording()); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); EXPECT_EQ(0, audio_device()->StartRecording()); EXPECT_TRUE(audio_device()->Recording()); } void StopRecording() { EXPECT_EQ(0, audio_device()->StopRecording()); EXPECT_FALSE(audio_device()->Recording()); EXPECT_FALSE(audio_device()->RecordingIsInitialized()); } bool NewWindowsAudioDeviceModuleIsUsed() { #ifdef WEBRTC_WIN AudioDeviceModule::AudioLayer audio_layer; EXPECT_EQ(0, audio_device()->ActiveAudioLayer(&audio_layer)); if (audio_layer == AudioDeviceModule::kWindowsCoreAudio2) { // Default device is always added as first element in the list and the // default communication device as the second element. Hence, the list // contains two extra elements in this case. return true; } #endif return false; } private: #ifdef WEBRTC_WIN // Windows Core Audio based ADM needs to run on a COM initialized thread. std::unique_ptr com_initializer_; #endif AudioDeviceModule::AudioLayer audio_layer_; std::unique_ptr task_queue_factory_; bool requirements_satisfied_ = true; rtc::Event event_; rtc::scoped_refptr audio_device_; bool stereo_playout_ = false; }; // Instead of using the test fixture, verify that the different factory methods // work as intended. TEST(MAYBE_AudioDeviceTestWin, ConstructDestructWithFactory) { std::unique_ptr task_queue_factory = CreateDefaultTaskQueueFactory(); rtc::scoped_refptr audio_device; // The default factory should work for all platforms when a default ADM is // requested. audio_device = AudioDeviceModule::Create( AudioDeviceModule::kPlatformDefaultAudio, task_queue_factory.get()); EXPECT_TRUE(audio_device); audio_device = nullptr; #ifdef WEBRTC_WIN // For Windows, the old factory method creates an ADM where the platform- // specific parts are implemented by an AudioDeviceGeneric object. Verify // that the old factory can't be used in combination with the latest audio // layer AudioDeviceModule::kWindowsCoreAudio2. audio_device = AudioDeviceModule::Create( AudioDeviceModule::kWindowsCoreAudio2, task_queue_factory.get()); EXPECT_FALSE(audio_device); audio_device = nullptr; // Instead, ensure that the new dedicated factory method called // CreateWindowsCoreAudioAudioDeviceModule() can be used on Windows and that // it sets the audio layer to kWindowsCoreAudio2 implicitly. Note that, the // new ADM for Windows must be created on a COM thread. ScopedCOMInitializer com_initializer(ScopedCOMInitializer::kMTA); EXPECT_TRUE(com_initializer.Succeeded()); audio_device = CreateWindowsCoreAudioAudioDeviceModule(task_queue_factory.get()); EXPECT_TRUE(audio_device); AudioDeviceModule::AudioLayer audio_layer; EXPECT_EQ(0, audio_device->ActiveAudioLayer(&audio_layer)); EXPECT_EQ(audio_layer, AudioDeviceModule::kWindowsCoreAudio2); #endif } // Uses the test fixture to create, initialize and destruct the ADM. TEST_P(MAYBE_AudioDeviceTest, ConstructDestructDefault) {} TEST_P(MAYBE_AudioDeviceTest, InitTerminate) { SKIP_TEST_IF_NOT(requirements_satisfied()); // Initialization is part of the test fixture. EXPECT_TRUE(audio_device()->Initialized()); EXPECT_EQ(0, audio_device()->Terminate()); EXPECT_FALSE(audio_device()->Initialized()); } // Enumerate all available and active output devices. TEST_P(MAYBE_AudioDeviceTest, PlayoutDeviceNames) { SKIP_TEST_IF_NOT(requirements_satisfied()); char device_name[kAdmMaxDeviceNameSize]; char unique_id[kAdmMaxGuidSize]; int num_devices = audio_device()->PlayoutDevices(); if (NewWindowsAudioDeviceModuleIsUsed()) { num_devices += 2; } EXPECT_GT(num_devices, 0); for (int i = 0; i < num_devices; ++i) { EXPECT_EQ(0, audio_device()->PlayoutDeviceName(i, device_name, unique_id)); } EXPECT_EQ(-1, audio_device()->PlayoutDeviceName(num_devices, device_name, unique_id)); } // Enumerate all available and active input devices. TEST_P(MAYBE_AudioDeviceTest, RecordingDeviceNames) { SKIP_TEST_IF_NOT(requirements_satisfied()); char device_name[kAdmMaxDeviceNameSize]; char unique_id[kAdmMaxGuidSize]; int num_devices = audio_device()->RecordingDevices(); if (NewWindowsAudioDeviceModuleIsUsed()) { num_devices += 2; } EXPECT_GT(num_devices, 0); for (int i = 0; i < num_devices; ++i) { EXPECT_EQ(0, audio_device()->RecordingDeviceName(i, device_name, unique_id)); } EXPECT_EQ(-1, audio_device()->RecordingDeviceName(num_devices, device_name, unique_id)); } // Counts number of active output devices and ensure that all can be selected. TEST_P(MAYBE_AudioDeviceTest, SetPlayoutDevice) { SKIP_TEST_IF_NOT(requirements_satisfied()); int num_devices = audio_device()->PlayoutDevices(); if (NewWindowsAudioDeviceModuleIsUsed()) { num_devices += 2; } EXPECT_GT(num_devices, 0); // Verify that all available playout devices can be set (not enabled yet). for (int i = 0; i < num_devices; ++i) { EXPECT_EQ(0, audio_device()->SetPlayoutDevice(i)); } EXPECT_EQ(-1, audio_device()->SetPlayoutDevice(num_devices)); #ifdef WEBRTC_WIN // On Windows, verify the alternative method where the user can select device // by role. EXPECT_EQ( 0, audio_device()->SetPlayoutDevice(AudioDeviceModule::kDefaultDevice)); EXPECT_EQ(0, audio_device()->SetPlayoutDevice( AudioDeviceModule::kDefaultCommunicationDevice)); #endif } // Counts number of active input devices and ensure that all can be selected. TEST_P(MAYBE_AudioDeviceTest, SetRecordingDevice) { SKIP_TEST_IF_NOT(requirements_satisfied()); int num_devices = audio_device()->RecordingDevices(); if (NewWindowsAudioDeviceModuleIsUsed()) { num_devices += 2; } EXPECT_GT(num_devices, 0); // Verify that all available recording devices can be set (not enabled yet). for (int i = 0; i < num_devices; ++i) { EXPECT_EQ(0, audio_device()->SetRecordingDevice(i)); } EXPECT_EQ(-1, audio_device()->SetRecordingDevice(num_devices)); #ifdef WEBRTC_WIN // On Windows, verify the alternative method where the user can select device // by role. EXPECT_EQ( 0, audio_device()->SetRecordingDevice(AudioDeviceModule::kDefaultDevice)); EXPECT_EQ(0, audio_device()->SetRecordingDevice( AudioDeviceModule::kDefaultCommunicationDevice)); #endif } // Tests Start/Stop playout without any registered audio callback. TEST_P(MAYBE_AudioDeviceTest, StartStopPlayout) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartPlayout(); StopPlayout(); } // Tests Start/Stop recording without any registered audio callback. TEST_P(MAYBE_AudioDeviceTest, StartStopRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartRecording(); StopRecording(); } // Tests Start/Stop playout for all available input devices to ensure that // the selected device can be created and used as intended. TEST_P(MAYBE_AudioDeviceTest, StartStopPlayoutWithRealDevice) { SKIP_TEST_IF_NOT(requirements_satisfied()); int num_devices = audio_device()->PlayoutDevices(); if (NewWindowsAudioDeviceModuleIsUsed()) { num_devices += 2; } EXPECT_GT(num_devices, 0); // Verify that all available playout devices can be set and used. for (int i = 0; i < num_devices; ++i) { EXPECT_EQ(0, audio_device()->SetPlayoutDevice(i)); StartPlayout(); StopPlayout(); } #ifdef WEBRTC_WIN AudioDeviceModule::WindowsDeviceType device_role[] = { AudioDeviceModule::kDefaultDevice, AudioDeviceModule::kDefaultCommunicationDevice}; for (size_t i = 0; i < arraysize(device_role); ++i) { EXPECT_EQ(0, audio_device()->SetPlayoutDevice(device_role[i])); StartPlayout(); StopPlayout(); } #endif } // Tests Start/Stop recording for all available input devices to ensure that // the selected device can be created and used as intended. TEST_P(MAYBE_AudioDeviceTest, StartStopRecordingWithRealDevice) { SKIP_TEST_IF_NOT(requirements_satisfied()); int num_devices = audio_device()->RecordingDevices(); if (NewWindowsAudioDeviceModuleIsUsed()) { num_devices += 2; } EXPECT_GT(num_devices, 0); // Verify that all available recording devices can be set and used. for (int i = 0; i < num_devices; ++i) { EXPECT_EQ(0, audio_device()->SetRecordingDevice(i)); StartRecording(); StopRecording(); } #ifdef WEBRTC_WIN AudioDeviceModule::WindowsDeviceType device_role[] = { AudioDeviceModule::kDefaultDevice, AudioDeviceModule::kDefaultCommunicationDevice}; for (size_t i = 0; i < arraysize(device_role); ++i) { EXPECT_EQ(0, audio_device()->SetRecordingDevice(device_role[i])); StartRecording(); StopRecording(); } #endif } // Tests Init/Stop/Init recording without any registered audio callback. // See https://bugs.chromium.org/p/webrtc/issues/detail?id=8041 for details // on why this test is useful. TEST_P(MAYBE_AudioDeviceTest, InitStopInitRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); StopRecording(); EXPECT_EQ(0, audio_device()->InitRecording()); StopRecording(); } // Verify that additional attempts to initialize or start recording while // already being active works. Additional calls should just be ignored. TEST_P(MAYBE_AudioDeviceTest, StartInitRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartRecording(); // An additional attempt to initialize at this stage should be ignored. EXPECT_EQ(0, audio_device()->InitRecording()); // Same for additional request to start recording while already active. EXPECT_EQ(0, audio_device()->StartRecording()); StopRecording(); } // Verify that additional attempts to initialize or start playou while // already being active works. Additional calls should just be ignored. TEST_P(MAYBE_AudioDeviceTest, StartInitPlayout) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartPlayout(); // An additional attempt to initialize at this stage should be ignored. EXPECT_EQ(0, audio_device()->InitPlayout()); // Same for additional request to start playout while already active. EXPECT_EQ(0, audio_device()->StartPlayout()); StopPlayout(); } // Tests Init/Stop/Init recording while playout is active. TEST_P(MAYBE_AudioDeviceTest, InitStopInitRecordingWhilePlaying) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartPlayout(); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); StopRecording(); EXPECT_EQ(0, audio_device()->InitRecording()); StopRecording(); StopPlayout(); } // Tests Init/Stop/Init playout without any registered audio callback. TEST_P(MAYBE_AudioDeviceTest, InitStopInitPlayout) { SKIP_TEST_IF_NOT(requirements_satisfied()); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); StopPlayout(); EXPECT_EQ(0, audio_device()->InitPlayout()); StopPlayout(); } // Tests Init/Stop/Init playout while recording is active. TEST_P(MAYBE_AudioDeviceTest, InitStopInitPlayoutWhileRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartRecording(); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); StopPlayout(); EXPECT_EQ(0, audio_device()->InitPlayout()); StopPlayout(); StopRecording(); } // TODO(henrika): restart without intermediate destruction is currently only // supported on Windows. #ifdef WEBRTC_WIN // Tests Start/Stop playout followed by a second session (emulates a restart // triggered by a user using public APIs). TEST_P(MAYBE_AudioDeviceTest, StartStopPlayoutWithExternalRestart) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartPlayout(); StopPlayout(); // Restart playout without destroying the ADM in between. Ensures that we // support: Init(), Start(), Stop(), Init(), Start(), Stop(). StartPlayout(); StopPlayout(); } // Tests Start/Stop recording followed by a second session (emulates a restart // triggered by a user using public APIs). TEST_P(MAYBE_AudioDeviceTest, StartStopRecordingWithExternalRestart) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartRecording(); StopRecording(); // Restart recording without destroying the ADM in between. Ensures that we // support: Init(), Start(), Stop(), Init(), Start(), Stop(). StartRecording(); StopRecording(); } // Tests Start/Stop playout followed by a second session (emulates a restart // triggered by an internal callback e.g. corresponding to a device switch). // Note that, internal restart is only supported in combination with the latest // Windows ADM. TEST_P(MAYBE_AudioDeviceTest, StartStopPlayoutWithInternalRestart) { SKIP_TEST_IF_NOT(requirements_satisfied()); if (audio_layer() != AudioDeviceModule::kWindowsCoreAudio2) { return; } MockAudioTransport mock(TransportType::kPlay); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); event()->Wait(kTestTimeOut); EXPECT_TRUE(audio_device()->Playing()); // Restart playout but without stopping the internal audio thread. // This procedure uses a non-public test API and it emulates what happens // inside the ADM when e.g. a device is removed. EXPECT_EQ(0, audio_device()->RestartPlayoutInternally()); // Run basic tests of public APIs while a restart attempt is active. // These calls should now be very thin and not trigger any new actions. EXPECT_EQ(-1, audio_device()->StopPlayout()); EXPECT_TRUE(audio_device()->Playing()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_EQ(0, audio_device()->StartPlayout()); // Wait until audio has restarted and a new sequence of audio callbacks // becomes active. // TODO(henrika): is it possible to verify that the internal state transition // is Stop->Init->Start? ASSERT_TRUE(Mock::VerifyAndClearExpectations(&mock)); mock.ResetCallbackCounters(); EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); event()->Wait(kTestTimeOut); EXPECT_TRUE(audio_device()->Playing()); // Stop playout and the audio thread after successful internal restart. StopPlayout(); PreTearDown(); } // Tests Start/Stop recording followed by a second session (emulates a restart // triggered by an internal callback e.g. corresponding to a device switch). // Note that, internal restart is only supported in combination with the latest // Windows ADM. TEST_P(MAYBE_AudioDeviceTest, StartStopRecordingWithInternalRestart) { SKIP_TEST_IF_NOT(requirements_satisfied()); if (audio_layer() != AudioDeviceModule::kWindowsCoreAudio2) { return; } MockAudioTransport mock(TransportType::kRecord); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartRecording(); event()->Wait(kTestTimeOut); EXPECT_TRUE(audio_device()->Recording()); // Restart recording but without stopping the internal audio thread. // This procedure uses a non-public test API and it emulates what happens // inside the ADM when e.g. a device is removed. EXPECT_EQ(0, audio_device()->RestartRecordingInternally()); // Run basic tests of public APIs while a restart attempt is active. // These calls should now be very thin and not trigger any new actions. EXPECT_EQ(-1, audio_device()->StopRecording()); EXPECT_TRUE(audio_device()->Recording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_EQ(0, audio_device()->StartRecording()); // Wait until audio has restarted and a new sequence of audio callbacks // becomes active. // TODO(henrika): is it possible to verify that the internal state transition // is Stop->Init->Start? ASSERT_TRUE(Mock::VerifyAndClearExpectations(&mock)); mock.ResetCallbackCounters(); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, false, _)) .Times(AtLeast(kNumCallbacks)); event()->Wait(kTestTimeOut); EXPECT_TRUE(audio_device()->Recording()); // Stop recording and the audio thread after successful internal restart. StopRecording(); PreTearDown(); } #endif // #ifdef WEBRTC_WIN // Start playout and verify that the native audio layer starts asking for real // audio samples to play out using the NeedMorePlayData() callback. // Note that we can't add expectations on audio parameters in EXPECT_CALL // since parameter are not provided in the each callback. We therefore test and // verify the parameters in the fake audio transport implementation instead. TEST_P(MAYBE_AudioDeviceTest, StartPlayoutVerifyCallbacks) { SKIP_TEST_IF_NOT(requirements_satisfied()); MockAudioTransport mock(TransportType::kPlay); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); event()->Wait(kTestTimeOut); StopPlayout(); PreTearDown(); } // Don't run these tests in combination with sanitizers. // They are already flaky *without* sanitizers. // Sanitizers seem to increase flakiness (which brings noise), // without reporting anything. // TODO(webrtc:10867): Re-enable when flakiness fixed. #if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \ defined(THREAD_SANITIZER) #define MAYBE_StartRecordingVerifyCallbacks \ DISABLED_StartRecordingVerifyCallbacks #define MAYBE_StartPlayoutAndRecordingVerifyCallbacks \ DISABLED_StartPlayoutAndRecordingVerifyCallbacks #else #define MAYBE_StartRecordingVerifyCallbacks StartRecordingVerifyCallbacks #define MAYBE_StartPlayoutAndRecordingVerifyCallbacks \ StartPlayoutAndRecordingVerifyCallbacks #endif // Start recording and verify that the native audio layer starts providing real // audio samples using the RecordedDataIsAvailable() callback. TEST_P(MAYBE_AudioDeviceTest, MAYBE_StartRecordingVerifyCallbacks) { SKIP_TEST_IF_NOT(requirements_satisfied()); MockAudioTransport mock(TransportType::kRecord); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartRecording(); event()->Wait(kTestTimeOut); StopRecording(); PreTearDown(); } // Start playout and recording (full-duplex audio) and verify that audio is // active in both directions. TEST_P(MAYBE_AudioDeviceTest, MAYBE_StartPlayoutAndRecordingVerifyCallbacks) { SKIP_TEST_IF_NOT(requirements_satisfied()); MockAudioTransport mock(TransportType::kPlayAndRecord); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); StartRecording(); event()->Wait(kTestTimeOut); StopRecording(); StopPlayout(); PreTearDown(); } // Start playout and recording and store recorded data in an intermediate FIFO // buffer from which the playout side then reads its samples in the same order // as they were stored. Under ideal circumstances, a callback sequence would // look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-' // means 'packet played'. Under such conditions, the FIFO would contain max 1, // with an average somewhere in (0,1) depending on how long the packets are // buffered. However, under more realistic conditions, the size // of the FIFO will vary more due to an unbalance between the two sides. // This test tries to verify that the device maintains a balanced callback- // sequence by running in loopback for a few seconds while measuring the size // (max and average) of the FIFO. The size of the FIFO is increased by the // recording side and decreased by the playout side. TEST_P(MAYBE_AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) { SKIP_TEST_IF_NOT(requirements_satisfied()); NiceMock mock(TransportType::kPlayAndRecord); FifoAudioStream audio_stream; mock.HandleCallbacks(event(), &audio_stream, kFullDuplexTime.seconds() * kNumCallbacksPerSecond); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); // Run both sides using the same channel configuration to avoid conversions // between mono/stereo while running in full duplex mode. Also, some devices // (mainly on Windows) do not support mono. EXPECT_EQ(0, audio_device()->SetStereoPlayout(true)); EXPECT_EQ(0, audio_device()->SetStereoRecording(true)); // Mute speakers to prevent howling. EXPECT_EQ(0, audio_device()->SetSpeakerVolume(0)); StartPlayout(); StartRecording(); event()->Wait(std::max(kTestTimeOut, kFullDuplexTime)); StopRecording(); StopPlayout(); PreTearDown(); } // Runs audio in full duplex until user hits Enter. Intended as a manual test // to ensure that the audio quality is good and that real device switches works // as intended. TEST_P(MAYBE_AudioDeviceTest, DISABLED_RunPlayoutAndRecordingInFullDuplexAndWaitForEnterKey) { SKIP_TEST_IF_NOT(requirements_satisfied()); if (audio_layer() != AudioDeviceModule::kWindowsCoreAudio2) { return; } NiceMock mock(TransportType::kPlayAndRecord); FifoAudioStream audio_stream; mock.HandleCallbacks(&audio_stream); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); EXPECT_EQ(0, audio_device()->SetStereoPlayout(true)); EXPECT_EQ(0, audio_device()->SetStereoRecording(true)); // Ensure that the sample rate for both directions are identical so that we // always can listen to our own voice. Will lead to rate conversion (and // higher latency) if the native sample rate is not 48kHz. EXPECT_EQ(0, audio_device()->SetPlayoutSampleRate(48000)); EXPECT_EQ(0, audio_device()->SetRecordingSampleRate(48000)); StartPlayout(); StartRecording(); do { PRINT("Loopback audio is active at 48kHz. Press Enter to stop.\n"); } while (getchar() != '\n'); StopRecording(); StopPlayout(); PreTearDown(); } // Measures loopback latency and reports the min, max and average values for // a full duplex audio session. // The latency is measured like so: // - Insert impulses periodically on the output side. // - Detect the impulses on the input side. // - Measure the time difference between the transmit time and receive time. // - Store time differences in a vector and calculate min, max and average. // This test needs the '--gtest_also_run_disabled_tests' flag to run and also // some sort of audio feedback loop. E.g. a headset where the mic is placed // close to the speaker to ensure highest possible echo. It is also recommended // to run the test at highest possible output volume. TEST_P(MAYBE_AudioDeviceTest, DISABLED_MeasureLoopbackLatency) { SKIP_TEST_IF_NOT(requirements_satisfied()); NiceMock mock(TransportType::kPlayAndRecord); LatencyAudioStream audio_stream; mock.HandleCallbacks(event(), &audio_stream, kMeasureLatencyTime.seconds() * kNumCallbacksPerSecond); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); EXPECT_EQ(0, audio_device()->SetStereoPlayout(true)); EXPECT_EQ(0, audio_device()->SetStereoRecording(true)); StartPlayout(); StartRecording(); event()->Wait(std::max(kTestTimeOut, kMeasureLatencyTime)); StopRecording(); StopPlayout(); // Avoid concurrent access to audio_stream. PreTearDown(); // Verify that a sufficient number of transmitted impulses are detected. EXPECT_GE(audio_stream.num_latency_values(), static_cast( kImpulseFrequencyInHz * kMeasureLatencyTime.seconds() - 2)); // Print out min, max and average delay values for debugging purposes. audio_stream.PrintResults(); } #ifdef WEBRTC_WIN // Test two different audio layers (or rather two different Core Audio // implementations) for Windows. INSTANTIATE_TEST_SUITE_P( AudioLayerWin, MAYBE_AudioDeviceTest, ::testing::Values(AudioDeviceModule::kPlatformDefaultAudio, AudioDeviceModule::kWindowsCoreAudio2)); #else // For all platforms but Windows, only test the default audio layer. INSTANTIATE_TEST_SUITE_P( AudioLayer, MAYBE_AudioDeviceTest, ::testing::Values(AudioDeviceModule::kPlatformDefaultAudio)); #endif } // namespace webrtc