/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/vector_math.h" #include #include "rtc_base/system/arch.h" #include "system_wrappers/include/cpu_features_wrapper.h" #include "test/gtest.h" namespace webrtc { #if defined(WEBRTC_HAS_NEON) TEST(VectorMath, Sqrt) { std::array x; std::array z; std::array z_neon; for (size_t k = 0; k < x.size(); ++k) { x[k] = (2.f / 3.f) * k; } std::copy(x.begin(), x.end(), z.begin()); aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z); std::copy(x.begin(), x.end(), z_neon.begin()); aec3::VectorMath(Aec3Optimization::kNeon).Sqrt(z_neon); for (size_t k = 0; k < z.size(); ++k) { EXPECT_NEAR(z[k], z_neon[k], 0.0001f); EXPECT_NEAR(sqrtf(x[k]), z_neon[k], 0.0001f); } } TEST(VectorMath, Multiply) { std::array x; std::array y; std::array z; std::array z_neon; for (size_t k = 0; k < x.size(); ++k) { x[k] = k; y[k] = (2.f / 3.f) * k; } aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z); aec3::VectorMath(Aec3Optimization::kNeon).Multiply(x, y, z_neon); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_neon[k]); EXPECT_FLOAT_EQ(x[k] * y[k], z_neon[k]); } } TEST(VectorMath, Accumulate) { std::array x; std::array z; std::array z_neon; for (size_t k = 0; k < x.size(); ++k) { x[k] = k; z[k] = z_neon[k] = 2.f * k; } aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z); aec3::VectorMath(Aec3Optimization::kNeon).Accumulate(x, z_neon); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_neon[k]); EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_neon[k]); } } #endif #if defined(WEBRTC_ARCH_X86_FAMILY) TEST(VectorMath, Sse2Sqrt) { if (GetCPUInfo(kSSE2) != 0) { std::array x; std::array z; std::array z_sse2; for (size_t k = 0; k < x.size(); ++k) { x[k] = (2.f / 3.f) * k; } std::copy(x.begin(), x.end(), z.begin()); aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z); std::copy(x.begin(), x.end(), z_sse2.begin()); aec3::VectorMath(Aec3Optimization::kSse2).Sqrt(z_sse2); EXPECT_EQ(z, z_sse2); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_sse2[k]); EXPECT_FLOAT_EQ(sqrtf(x[k]), z_sse2[k]); } } } TEST(VectorMath, Avx2Sqrt) { if (GetCPUInfo(kAVX2) != 0) { std::array x; std::array z; std::array z_avx2; for (size_t k = 0; k < x.size(); ++k) { x[k] = (2.f / 3.f) * k; } std::copy(x.begin(), x.end(), z.begin()); aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z); std::copy(x.begin(), x.end(), z_avx2.begin()); aec3::VectorMath(Aec3Optimization::kAvx2).Sqrt(z_avx2); EXPECT_EQ(z, z_avx2); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_avx2[k]); EXPECT_FLOAT_EQ(sqrtf(x[k]), z_avx2[k]); } } } TEST(VectorMath, Sse2Multiply) { if (GetCPUInfo(kSSE2) != 0) { std::array x; std::array y; std::array z; std::array z_sse2; for (size_t k = 0; k < x.size(); ++k) { x[k] = k; y[k] = (2.f / 3.f) * k; } aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z); aec3::VectorMath(Aec3Optimization::kSse2).Multiply(x, y, z_sse2); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_sse2[k]); EXPECT_FLOAT_EQ(x[k] * y[k], z_sse2[k]); } } } TEST(VectorMath, Avx2Multiply) { if (GetCPUInfo(kAVX2) != 0) { std::array x; std::array y; std::array z; std::array z_avx2; for (size_t k = 0; k < x.size(); ++k) { x[k] = k; y[k] = (2.f / 3.f) * k; } aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z); aec3::VectorMath(Aec3Optimization::kAvx2).Multiply(x, y, z_avx2); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_avx2[k]); EXPECT_FLOAT_EQ(x[k] * y[k], z_avx2[k]); } } } TEST(VectorMath, Sse2Accumulate) { if (GetCPUInfo(kSSE2) != 0) { std::array x; std::array z; std::array z_sse2; for (size_t k = 0; k < x.size(); ++k) { x[k] = k; z[k] = z_sse2[k] = 2.f * k; } aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z); aec3::VectorMath(Aec3Optimization::kSse2).Accumulate(x, z_sse2); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_sse2[k]); EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_sse2[k]); } } } TEST(VectorMath, Avx2Accumulate) { if (GetCPUInfo(kAVX2) != 0) { std::array x; std::array z; std::array z_avx2; for (size_t k = 0; k < x.size(); ++k) { x[k] = k; z[k] = z_avx2[k] = 2.f * k; } aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z); aec3::VectorMath(Aec3Optimization::kAvx2).Accumulate(x, z_avx2); for (size_t k = 0; k < z.size(); ++k) { EXPECT_FLOAT_EQ(z[k], z_avx2[k]); EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_avx2[k]); } } } #endif } // namespace webrtc