/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/noise_level_estimator.h" #include #include #include #include #include "api/array_view.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" namespace webrtc { namespace { constexpr int kFramesPerSecond = 100; float FrameEnergy(const AudioFrameView& audio) { float energy = 0.0f; for (int k = 0; k < audio.num_channels(); ++k) { float channel_energy = std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.0f, [](float a, float b) -> float { return a + b * b; }); energy = std::max(channel_energy, energy); } return energy; } float EnergyToDbfs(float signal_energy, int num_samples) { RTC_DCHECK_GE(signal_energy, 0.0f); const float rms_square = signal_energy / num_samples; constexpr float kMinDbfs = -90.30899869919436f; if (rms_square <= 1.0f) { return kMinDbfs; } return 10.0f * std::log10(rms_square) + kMinDbfs; } // Updates the noise floor with instant decay and slow attack. This tuning is // specific for AGC2, so that (i) it can promptly increase the gain if the noise // floor drops (instant decay) and (ii) in case of music or fast speech, due to // which the noise floor can be overestimated, the gain reduction is slowed // down. float SmoothNoiseFloorEstimate(float current_estimate, float new_estimate) { constexpr float kAttack = 0.5f; if (current_estimate < new_estimate) { // Attack phase. return kAttack * new_estimate + (1.0f - kAttack) * current_estimate; } // Instant attack. return new_estimate; } class NoiseFloorEstimator : public NoiseLevelEstimator { public: // Update the noise floor every 5 seconds. static constexpr int kUpdatePeriodNumFrames = 500; static_assert(kUpdatePeriodNumFrames >= 200, "A too small value may cause noise level overestimation."); static_assert(kUpdatePeriodNumFrames <= 1500, "A too large value may make AGC2 slow at reacting to increased " "noise levels."); NoiseFloorEstimator(ApmDataDumper* data_dumper) : data_dumper_(data_dumper) { RTC_DCHECK(data_dumper_); // Initially assume that 48 kHz will be used. `Analyze()` will detect the // used sample rate and call `Initialize()` again if needed. Initialize(/*sample_rate_hz=*/48000); } NoiseFloorEstimator(const NoiseFloorEstimator&) = delete; NoiseFloorEstimator& operator=(const NoiseFloorEstimator&) = delete; ~NoiseFloorEstimator() = default; float Analyze(const AudioFrameView& frame) override { // Detect sample rate changes. const int sample_rate_hz = static_cast(frame.samples_per_channel() * kFramesPerSecond); if (sample_rate_hz != sample_rate_hz_) { Initialize(sample_rate_hz); } const float frame_energy = FrameEnergy(frame); if (frame_energy <= min_noise_energy_) { // Ignore frames when muted or below the minimum measurable energy. if (data_dumper_) data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level", noise_energy_); return EnergyToDbfs(noise_energy_, static_cast(frame.samples_per_channel())); } if (preliminary_noise_energy_set_) { preliminary_noise_energy_ = std::min(preliminary_noise_energy_, frame_energy); } else { preliminary_noise_energy_ = frame_energy; preliminary_noise_energy_set_ = true; } if (data_dumper_) data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level", preliminary_noise_energy_); if (counter_ == 0) { // Full period observed. first_period_ = false; // Update the estimated noise floor energy with the preliminary // estimation. noise_energy_ = SmoothNoiseFloorEstimate( /*current_estimate=*/noise_energy_, /*new_estimate=*/preliminary_noise_energy_); // Reset for a new observation period. counter_ = kUpdatePeriodNumFrames; preliminary_noise_energy_set_ = false; } else if (first_period_) { // While analyzing the signal during the initial period, continuously // update the estimated noise energy, which is monotonic. noise_energy_ = preliminary_noise_energy_; counter_--; } else { // During the observation period it's only allowed to lower the energy. noise_energy_ = std::min(noise_energy_, preliminary_noise_energy_); counter_--; } float noise_rms_dbfs = EnergyToDbfs( noise_energy_, static_cast(frame.samples_per_channel())); if (data_dumper_) data_dumper_->DumpRaw("agc2_noise_rms_dbfs", noise_rms_dbfs); return noise_rms_dbfs; } private: void Initialize(int sample_rate_hz) { sample_rate_hz_ = sample_rate_hz; first_period_ = true; preliminary_noise_energy_set_ = false; // Initialize the minimum noise energy to -84 dBFS. min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond; preliminary_noise_energy_ = min_noise_energy_; noise_energy_ = min_noise_energy_; counter_ = kUpdatePeriodNumFrames; } ApmDataDumper* const data_dumper_; int sample_rate_hz_; float min_noise_energy_; bool first_period_; bool preliminary_noise_energy_set_; float preliminary_noise_energy_; float noise_energy_; int counter_; }; } // namespace std::unique_ptr CreateNoiseFloorEstimator( ApmDataDumper* data_dumper) { return std::make_unique(data_dumper); } } // namespace webrtc