/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/frame_buffer2.h" #include #include #include #include #include #include "api/task_queue/task_queue_base.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "modules/video_coding/frame_object.h" #include "modules/video_coding/timing/jitter_estimator.h" #include "modules/video_coding/timing/timing.h" #include "rtc_base/numerics/sequence_number_util.h" #include "rtc_base/platform_thread.h" #include "rtc_base/random.h" #include "system_wrappers/include/clock.h" #include "test/field_trial.h" #include "test/gmock.h" #include "test/gtest.h" #include "test/scoped_key_value_config.h" #include "test/time_controller/simulated_time_controller.h" using ::testing::_; using ::testing::IsEmpty; using ::testing::Return; using ::testing::SizeIs; namespace webrtc { namespace video_coding { class VCMTimingFake : public VCMTiming { public: explicit VCMTimingFake(Clock* clock, const FieldTrialsView& field_trials) : VCMTiming(clock, field_trials) {} Timestamp RenderTime(uint32_t frame_timestamp, Timestamp now) const override { if (last_render_time_.IsMinusInfinity()) { last_render_time_ = now + kDelay; last_timestamp_ = frame_timestamp; } auto diff = MinDiff(frame_timestamp, last_timestamp_); auto timeDiff = TimeDelta::Millis(diff / 90); if (AheadOf(frame_timestamp, last_timestamp_)) last_render_time_ += timeDiff; else last_render_time_ -= timeDiff; last_timestamp_ = frame_timestamp; return last_render_time_; } TimeDelta MaxWaitingTime(Timestamp render_time, Timestamp now, bool too_many_frames_queued) const override { return render_time - now - kDecodeTime; } TimeDelta GetCurrentJitter() { return VCMTiming::GetTimings().jitter_buffer_delay; } private: static constexpr TimeDelta kDelay = TimeDelta::Millis(50); const TimeDelta kDecodeTime = kDelay / 2; mutable uint32_t last_timestamp_ = 0; mutable Timestamp last_render_time_ = Timestamp::MinusInfinity(); }; class FrameObjectFake : public EncodedFrame { public: int64_t ReceivedTime() const override { return 0; } int64_t RenderTime() const override { return _renderTimeMs; } bool delayed_by_retransmission() const override { return delayed_by_retransmission_; } void set_delayed_by_retransmission(bool delayed) { delayed_by_retransmission_ = delayed; } private: bool delayed_by_retransmission_ = false; }; class VCMReceiveStatisticsCallbackMock : public VCMReceiveStatisticsCallback { public: MOCK_METHOD(void, OnCompleteFrame, (bool is_keyframe, size_t size_bytes, VideoContentType content_type), (override)); MOCK_METHOD(void, OnDroppedFrames, (uint32_t frames_dropped), (override)); MOCK_METHOD(void, OnFrameBufferTimingsUpdated, (int max_decode, int current_delay, int target_delay, int jitter_buffer, int min_playout_delay, int render_delay), (override)); MOCK_METHOD(void, OnTimingFrameInfoUpdated, (const TimingFrameInfo& info), (override)); }; class TestFrameBuffer2 : public ::testing::Test { protected: static constexpr int kMaxReferences = 5; static constexpr int kFps1 = 1000; static constexpr int kFps10 = kFps1 / 10; static constexpr int kFps20 = kFps1 / 20; static constexpr size_t kFrameSize = 10; TestFrameBuffer2() : time_controller_(Timestamp::Seconds(0)), time_task_queue_( time_controller_.GetTaskQueueFactory()->CreateTaskQueue( "extract queue", TaskQueueFactory::Priority::NORMAL)), timing_(time_controller_.GetClock(), field_trials_), buffer_(new FrameBuffer(time_controller_.GetClock(), &timing_, field_trials_)), rand_(0x34678213) {} template std::unique_ptr CreateFrame(uint16_t picture_id, uint8_t spatial_layer, int64_t ts_ms, bool last_spatial_layer, size_t frame_size_bytes, T... refs) { static_assert(sizeof...(refs) <= kMaxReferences, "To many references specified for EncodedFrame."); std::array references = { {rtc::checked_cast(refs)...}}; auto frame = std::make_unique(); frame->SetId(picture_id); frame->SetSpatialIndex(spatial_layer); frame->SetTimestamp(ts_ms * 90); frame->num_references = references.size(); frame->is_last_spatial_layer = last_spatial_layer; // Add some data to buffer. frame->SetEncodedData(EncodedImageBuffer::Create(frame_size_bytes)); for (size_t r = 0; r < references.size(); ++r) frame->references[r] = references[r]; return frame; } template int InsertFrame(uint16_t picture_id, uint8_t spatial_layer, int64_t ts_ms, bool last_spatial_layer, size_t frame_size_bytes, T... refs) { return buffer_->InsertFrame(CreateFrame(picture_id, spatial_layer, ts_ms, last_spatial_layer, frame_size_bytes, refs...)); } int InsertNackedFrame(uint16_t picture_id, int64_t ts_ms) { std::unique_ptr frame = CreateFrame(picture_id, 0, ts_ms, true, kFrameSize); frame->set_delayed_by_retransmission(true); return buffer_->InsertFrame(std::move(frame)); } void ExtractFrame(int64_t max_wait_time = 0, bool keyframe_required = false) { time_task_queue_->PostTask([this, max_wait_time, keyframe_required]() { buffer_->NextFrame(max_wait_time, keyframe_required, time_task_queue_.get(), [this](std::unique_ptr frame) { frames_.emplace_back(std::move(frame)); }); }); if (max_wait_time == 0) { time_controller_.AdvanceTime(TimeDelta::Zero()); } } void CheckFrame(size_t index, int picture_id, int spatial_layer) { ASSERT_LT(index, frames_.size()); ASSERT_TRUE(frames_[index]); ASSERT_EQ(picture_id, frames_[index]->Id()); ASSERT_EQ(spatial_layer, frames_[index]->SpatialIndex().value_or(0)); } void CheckFrameSize(size_t index, size_t size) { ASSERT_LT(index, frames_.size()); ASSERT_TRUE(frames_[index]); ASSERT_EQ(frames_[index]->size(), size); } void CheckNoFrame(size_t index) { ASSERT_LT(index, frames_.size()); ASSERT_FALSE(frames_[index]); } uint32_t Rand() { return rand_.Rand(); } test::ScopedKeyValueConfig field_trials_; webrtc::GlobalSimulatedTimeController time_controller_; std::unique_ptr time_task_queue_; VCMTimingFake timing_; std::unique_ptr buffer_; std::vector> frames_; Random rand_; }; // From https://en.cppreference.com/w/cpp/language/static: "If ... a constexpr // static data member (since C++11) is odr-used, a definition at namespace scope // is still required... This definition is deprecated for constexpr data members // since C++17." // kFrameSize is odr-used since it is passed by reference to EXPECT_EQ(). #if __cplusplus < 201703L constexpr size_t TestFrameBuffer2::kFrameSize; #endif TEST_F(TestFrameBuffer2, WaitForFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); ExtractFrame(50); InsertFrame(pid, 0, ts, true, kFrameSize); time_controller_.AdvanceTime(TimeDelta::Millis(50)); CheckFrame(0, pid, 0); } TEST_F(TestFrameBuffer2, ClearWhileWaitingForFrame) { const uint16_t pid = Rand(); // Insert a frame and wait for it for max 100ms. InsertFrame(pid, 0, 25, true, kFrameSize); ExtractFrame(100); // After 10ms, clear the buffer. time_controller_.AdvanceTime(TimeDelta::Millis(10)); buffer_->Clear(); // Confirm that the frame was not sent for rendering. time_controller_.AdvanceTime(TimeDelta::Millis(15)); EXPECT_THAT(frames_, IsEmpty()); // We are still waiting for a frame, since 100ms has not passed. Insert a new // frame. This new frame should be the one that is returned as the old frame // was cleared. const uint16_t new_pid = pid + 1; InsertFrame(new_pid, 0, 50, true, kFrameSize); time_controller_.AdvanceTime(TimeDelta::Millis(25)); ASSERT_THAT(frames_, SizeIs(1)); CheckFrame(0, new_pid, 0); } TEST_F(TestFrameBuffer2, OneSuperFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false, kFrameSize); InsertFrame(pid + 1, 1, ts, true, kFrameSize); ExtractFrame(); CheckFrame(0, pid, 1); } TEST_F(TestFrameBuffer2, ZeroPlayoutDelay) { test::ScopedKeyValueConfig field_trials; VCMTiming timing(time_controller_.GetClock(), field_trials); buffer_ = std::make_unique(time_controller_.GetClock(), &timing, field_trials); const VideoPlayoutDelay kPlayoutDelayMs = {0, 0}; std::unique_ptr test_frame(new FrameObjectFake()); test_frame->SetId(0); test_frame->SetPlayoutDelay(kPlayoutDelayMs); buffer_->InsertFrame(std::move(test_frame)); ExtractFrame(0, false); CheckFrame(0, 0, 0); EXPECT_EQ(0, frames_[0]->RenderTimeMs()); } // Flaky test, see bugs.webrtc.org/7068. TEST_F(TestFrameBuffer2, DISABLED_OneUnorderedSuperFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); ExtractFrame(50); InsertFrame(pid, 1, ts, true, kFrameSize); InsertFrame(pid, 0, ts, false, kFrameSize); time_controller_.AdvanceTime(TimeDelta::Zero()); CheckFrame(0, pid, 0); CheckFrame(1, pid, 1); } TEST_F(TestFrameBuffer2, DISABLED_OneLayerStreamReordered) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false, true, kFrameSize); ExtractFrame(); CheckFrame(0, pid, 0); for (int i = 1; i < 10; i += 2) { ExtractFrame(50); InsertFrame(pid + i + 1, 0, ts + (i + 1) * kFps10, true, kFrameSize, pid + i); time_controller_.AdvanceTime(TimeDelta::Millis(kFps10)); InsertFrame(pid + i, 0, ts + i * kFps10, true, kFrameSize, pid + i - 1); time_controller_.AdvanceTime(TimeDelta::Millis(kFps10)); ExtractFrame(); CheckFrame(i, pid + i, 0); CheckFrame(i + 1, pid + i + 1, 0); } } TEST_F(TestFrameBuffer2, ExtractFromEmptyBuffer) { ExtractFrame(); CheckNoFrame(0); } TEST_F(TestFrameBuffer2, MissingFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); InsertFrame(pid + 2, 0, ts, true, kFrameSize, pid); InsertFrame(pid + 3, 0, ts, true, kFrameSize, pid + 1, pid + 2); ExtractFrame(); ExtractFrame(); ExtractFrame(); CheckFrame(0, pid, 0); CheckFrame(1, pid + 2, 0); CheckNoFrame(2); } TEST_F(TestFrameBuffer2, OneLayerStream) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); ExtractFrame(); CheckFrame(0, pid, 0); for (int i = 1; i < 10; ++i) { InsertFrame(pid + i, 0, ts + i * kFps10, true, kFrameSize, pid + i - 1); ExtractFrame(); time_controller_.AdvanceTime(TimeDelta::Millis(kFps10)); CheckFrame(i, pid + i, 0); } } TEST_F(TestFrameBuffer2, DropTemporalLayerSlowDecoder) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); InsertFrame(pid + 1, 0, ts + kFps20, true, kFrameSize, pid); for (int i = 2; i < 10; i += 2) { uint32_t ts_tl0 = ts + i / 2 * kFps10; InsertFrame(pid + i, 0, ts_tl0, true, kFrameSize, pid + i - 2); InsertFrame(pid + i + 1, 0, ts_tl0 + kFps20, true, kFrameSize, pid + i, pid + i - 1); } for (int i = 0; i < 10; ++i) { ExtractFrame(); time_controller_.AdvanceTime(TimeDelta::Millis(70)); } CheckFrame(0, pid, 0); CheckFrame(1, pid + 1, 0); CheckFrame(2, pid + 2, 0); CheckFrame(3, pid + 4, 0); CheckFrame(4, pid + 6, 0); CheckFrame(5, pid + 8, 0); CheckNoFrame(6); CheckNoFrame(7); CheckNoFrame(8); CheckNoFrame(9); } TEST_F(TestFrameBuffer2, DropFramesIfSystemIsStalled) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); InsertFrame(pid + 1, 0, ts + 1 * kFps10, true, kFrameSize, pid); InsertFrame(pid + 2, 0, ts + 2 * kFps10, true, kFrameSize, pid + 1); InsertFrame(pid + 3, 0, ts + 3 * kFps10, true, kFrameSize); ExtractFrame(); // Jump forward in time, simulating the system being stalled for some reason. time_controller_.AdvanceTime(TimeDelta::Millis(3) * kFps10); // Extract one more frame, expect second and third frame to be dropped. ExtractFrame(); CheckFrame(0, pid + 0, 0); CheckFrame(1, pid + 3, 0); } TEST_F(TestFrameBuffer2, DroppedFramesCountedOnClear) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); for (int i = 1; i < 5; ++i) { InsertFrame(pid + i, 0, ts + i * kFps10, true, kFrameSize, pid + i - 1); } // All frames should be dropped when Clear is called. buffer_->Clear(); } TEST_F(TestFrameBuffer2, InsertLateFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); ExtractFrame(); InsertFrame(pid + 2, 0, ts, true, kFrameSize); ExtractFrame(); InsertFrame(pid + 1, 0, ts, true, kFrameSize, pid); ExtractFrame(); CheckFrame(0, pid, 0); CheckFrame(1, pid + 2, 0); CheckNoFrame(2); } TEST_F(TestFrameBuffer2, ProtectionModeNackFEC) { uint16_t pid = Rand(); uint32_t ts = Rand(); constexpr int64_t kRttMs = 200; buffer_->UpdateRtt(kRttMs); // Jitter estimate unaffected by RTT in this protection mode. buffer_->SetProtectionMode(kProtectionNackFEC); InsertNackedFrame(pid, ts); InsertNackedFrame(pid + 1, ts + 100); InsertNackedFrame(pid + 2, ts + 200); InsertFrame(pid + 3, 0, ts + 300, true, kFrameSize); ExtractFrame(); ExtractFrame(); ExtractFrame(); ExtractFrame(); ASSERT_EQ(4u, frames_.size()); EXPECT_LT(timing_.GetCurrentJitter().ms(), kRttMs); } TEST_F(TestFrameBuffer2, NoContinuousFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); EXPECT_EQ(-1, InsertFrame(pid + 1, 0, ts, true, kFrameSize, pid)); } TEST_F(TestFrameBuffer2, LastContinuousFrameSingleLayer) { uint16_t pid = Rand(); uint32_t ts = Rand(); EXPECT_EQ(pid, InsertFrame(pid, 0, ts, true, kFrameSize)); EXPECT_EQ(pid, InsertFrame(pid + 2, 0, ts, true, kFrameSize, pid + 1)); EXPECT_EQ(pid + 2, InsertFrame(pid + 1, 0, ts, true, kFrameSize, pid)); EXPECT_EQ(pid + 2, InsertFrame(pid + 4, 0, ts, true, kFrameSize, pid + 3)); EXPECT_EQ(pid + 5, InsertFrame(pid + 5, 0, ts, true, kFrameSize)); } TEST_F(TestFrameBuffer2, LastContinuousFrameTwoLayers) { uint16_t pid = Rand(); uint32_t ts = Rand(); EXPECT_EQ(pid, InsertFrame(pid, 0, ts, false, kFrameSize)); EXPECT_EQ(pid + 1, InsertFrame(pid + 1, 1, ts, true, kFrameSize)); EXPECT_EQ(pid + 1, InsertFrame(pid + 3, 1, ts, true, kFrameSize, pid + 1, pid + 2)); EXPECT_EQ(pid + 1, InsertFrame(pid + 4, 0, ts, false, kFrameSize, pid + 2)); EXPECT_EQ(pid + 1, InsertFrame(pid + 5, 1, ts, true, kFrameSize, pid + 3, pid + 4)); EXPECT_EQ(pid + 1, InsertFrame(pid + 6, 0, ts, false, kFrameSize, pid + 4)); EXPECT_EQ(pid + 6, InsertFrame(pid + 2, 0, ts, false, kFrameSize, pid)); EXPECT_EQ(pid + 7, InsertFrame(pid + 7, 1, ts, true, kFrameSize, pid + 5, pid + 6)); } TEST_F(TestFrameBuffer2, PictureIdJumpBack) { uint16_t pid = Rand(); uint32_t ts = Rand(); EXPECT_EQ(pid, InsertFrame(pid, 0, ts, true, kFrameSize)); EXPECT_EQ(pid + 1, InsertFrame(pid + 1, 0, ts + 1, true, kFrameSize, pid)); ExtractFrame(); CheckFrame(0, pid, 0); // Jump back in pid but increase ts. EXPECT_EQ(pid - 1, InsertFrame(pid - 1, 0, ts + 2, true, kFrameSize)); ExtractFrame(); ExtractFrame(); CheckFrame(1, pid - 1, 0); CheckNoFrame(2); } TEST_F(TestFrameBuffer2, ForwardJumps) { EXPECT_EQ(5453, InsertFrame(5453, 0, 1, true, kFrameSize)); ExtractFrame(); EXPECT_EQ(5454, InsertFrame(5454, 0, 1, true, kFrameSize, 5453)); ExtractFrame(); EXPECT_EQ(15670, InsertFrame(15670, 0, 1, true, kFrameSize)); ExtractFrame(); EXPECT_EQ(29804, InsertFrame(29804, 0, 1, true, kFrameSize)); ExtractFrame(); EXPECT_EQ(29805, InsertFrame(29805, 0, 1, true, kFrameSize, 29804)); ExtractFrame(); EXPECT_EQ(29806, InsertFrame(29806, 0, 1, true, kFrameSize, 29805)); ExtractFrame(); EXPECT_EQ(33819, InsertFrame(33819, 0, 1, true, kFrameSize)); ExtractFrame(); EXPECT_EQ(41248, InsertFrame(41248, 0, 1, true, kFrameSize)); ExtractFrame(); } TEST_F(TestFrameBuffer2, DuplicateFrames) { EXPECT_EQ(22256, InsertFrame(22256, 0, 1, true, kFrameSize)); ExtractFrame(); EXPECT_EQ(22256, InsertFrame(22256, 0, 1, true, kFrameSize)); } // TODO(philipel): implement more unittests related to invalid references. TEST_F(TestFrameBuffer2, InvalidReferences) { EXPECT_EQ(-1, InsertFrame(0, 0, 1000, true, kFrameSize, 2)); EXPECT_EQ(1, InsertFrame(1, 0, 2000, true, kFrameSize)); ExtractFrame(); EXPECT_EQ(2, InsertFrame(2, 0, 3000, true, kFrameSize, 1)); } TEST_F(TestFrameBuffer2, KeyframeRequired) { EXPECT_EQ(1, InsertFrame(1, 0, 1000, true, kFrameSize)); EXPECT_EQ(2, InsertFrame(2, 0, 2000, true, kFrameSize, 1)); EXPECT_EQ(3, InsertFrame(3, 0, 3000, true, kFrameSize)); ExtractFrame(); ExtractFrame(0, true); ExtractFrame(); CheckFrame(0, 1, 0); CheckFrame(1, 3, 0); CheckNoFrame(2); } TEST_F(TestFrameBuffer2, KeyframeClearsFullBuffer) { const int kMaxBufferSize = 600; for (int i = 1; i <= kMaxBufferSize; ++i) EXPECT_EQ(-1, InsertFrame(i, 0, i * 1000, true, kFrameSize, i - 1)); ExtractFrame(); CheckNoFrame(0); EXPECT_EQ(kMaxBufferSize + 1, InsertFrame(kMaxBufferSize + 1, 0, (kMaxBufferSize + 1) * 1000, true, kFrameSize)); ExtractFrame(); CheckFrame(1, kMaxBufferSize + 1, 0); } TEST_F(TestFrameBuffer2, DontUpdateOnUndecodableFrame) { InsertFrame(1, 0, 0, true, kFrameSize); ExtractFrame(0, true); InsertFrame(3, 0, 0, true, kFrameSize, 2, 0); InsertFrame(3, 0, 0, true, kFrameSize, 0); InsertFrame(2, 0, 0, true, kFrameSize); ExtractFrame(0, true); ExtractFrame(0, true); } TEST_F(TestFrameBuffer2, DontDecodeOlderTimestamp) { InsertFrame(2, 0, 1, true, kFrameSize); InsertFrame(1, 0, 2, true, kFrameSize); // Older picture id but newer timestamp. ExtractFrame(0); ExtractFrame(0); CheckFrame(0, 1, 0); CheckNoFrame(1); InsertFrame(3, 0, 4, true, kFrameSize); InsertFrame(4, 0, 3, true, kFrameSize); // Newer picture id but older timestamp. ExtractFrame(0); ExtractFrame(0); CheckFrame(2, 3, 0); CheckNoFrame(3); } TEST_F(TestFrameBuffer2, CombineFramesToSuperframe) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false, kFrameSize); InsertFrame(pid + 1, 1, ts, true, 2 * kFrameSize, pid); ExtractFrame(0); ExtractFrame(0); CheckFrame(0, pid, 1); CheckNoFrame(1); // Two frames should be combined and returned together. CheckFrameSize(0, 3 * kFrameSize); EXPECT_EQ(frames_[0]->SpatialIndex(), 1); EXPECT_EQ(frames_[0]->SpatialLayerFrameSize(0), kFrameSize); EXPECT_EQ(frames_[0]->SpatialLayerFrameSize(1), 2 * kFrameSize); } TEST_F(TestFrameBuffer2, HigherSpatialLayerNonDecodable) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false, kFrameSize); InsertFrame(pid + 1, 1, ts, true, kFrameSize, pid); ExtractFrame(0); CheckFrame(0, pid, 1); InsertFrame(pid + 3, 1, ts + kFps20, true, kFrameSize, pid); InsertFrame(pid + 4, 0, ts + kFps10, false, kFrameSize, pid); InsertFrame(pid + 5, 1, ts + kFps10, true, kFrameSize, pid + 3, pid + 4); time_controller_.AdvanceTime(TimeDelta::Millis(1000)); // Frame pid+3 is decodable but too late. // In superframe pid+4 is decodable, but frame pid+5 is not. // Incorrect implementation might skip pid+2 frame and output undecodable // pid+5 instead. ExtractFrame(); ExtractFrame(); CheckFrame(1, pid + 3, 1); CheckFrame(2, pid + 4, 1); } TEST_F(TestFrameBuffer2, StopWhileWaitingForFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, true, kFrameSize); ExtractFrame(10); buffer_->Stop(); time_controller_.AdvanceTime(TimeDelta::Millis(10)); EXPECT_THAT(frames_, IsEmpty()); // A new frame request should exit immediately and return no new frame. ExtractFrame(0); EXPECT_THAT(frames_, IsEmpty()); } } // namespace video_coding } // namespace webrtc