/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/timing/timing.h" #include "api/units/frequency.h" #include "api/units/time_delta.h" #include "system_wrappers/include/clock.h" #include "test/gtest.h" #include "test/scoped_key_value_config.h" namespace webrtc { namespace { constexpr Frequency k25Fps = Frequency::Hertz(25); constexpr Frequency k90kHz = Frequency::KiloHertz(90); } // namespace TEST(ReceiverTimingTest, JitterDelay) { test::ScopedKeyValueConfig field_trials; SimulatedClock clock(0); VCMTiming timing(&clock, field_trials); timing.Reset(); uint32_t timestamp = 0; timing.UpdateCurrentDelay(timestamp); timing.Reset(); timing.IncomingTimestamp(timestamp, clock.CurrentTime()); TimeDelta jitter_delay = TimeDelta::Millis(20); timing.SetJitterDelay(jitter_delay); timing.UpdateCurrentDelay(timestamp); timing.set_render_delay(TimeDelta::Zero()); auto wait_time = timing.MaxWaitingTime( timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), /*too_many_frames_queued=*/false); // First update initializes the render time. Since we have no decode delay // we get wait_time = renderTime - now - renderDelay = jitter. EXPECT_EQ(jitter_delay, wait_time); jitter_delay += TimeDelta::Millis(VCMTiming::kDelayMaxChangeMsPerS + 10); timestamp += 90000; clock.AdvanceTimeMilliseconds(1000); timing.SetJitterDelay(jitter_delay); timing.UpdateCurrentDelay(timestamp); wait_time = timing.MaxWaitingTime( timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), /*too_many_frames_queued=*/false); // Since we gradually increase the delay we only get 100 ms every second. EXPECT_EQ(jitter_delay - TimeDelta::Millis(10), wait_time); timestamp += 90000; clock.AdvanceTimeMilliseconds(1000); timing.UpdateCurrentDelay(timestamp); wait_time = timing.MaxWaitingTime( timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), /*too_many_frames_queued=*/false); EXPECT_EQ(jitter_delay, wait_time); // Insert frames without jitter, verify that this gives the exact wait time. const int kNumFrames = 300; for (int i = 0; i < kNumFrames; i++) { clock.AdvanceTime(1 / k25Fps); timestamp += k90kHz / k25Fps; timing.IncomingTimestamp(timestamp, clock.CurrentTime()); } timing.UpdateCurrentDelay(timestamp); wait_time = timing.MaxWaitingTime( timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), /*too_many_frames_queued=*/false); EXPECT_EQ(jitter_delay, wait_time); // Add decode time estimates for 1 second. const TimeDelta kDecodeTime = TimeDelta::Millis(10); for (int i = 0; i < k25Fps.hertz(); i++) { clock.AdvanceTime(kDecodeTime); timing.StopDecodeTimer(kDecodeTime, clock.CurrentTime()); timestamp += k90kHz / k25Fps; clock.AdvanceTime(1 / k25Fps - kDecodeTime); timing.IncomingTimestamp(timestamp, clock.CurrentTime()); } timing.UpdateCurrentDelay(timestamp); wait_time = timing.MaxWaitingTime( timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), /*too_many_frames_queued=*/false); EXPECT_EQ(jitter_delay, wait_time); const TimeDelta kMinTotalDelay = TimeDelta::Millis(200); timing.set_min_playout_delay(kMinTotalDelay); clock.AdvanceTimeMilliseconds(5000); timestamp += 5 * 90000; timing.UpdateCurrentDelay(timestamp); const TimeDelta kRenderDelay = TimeDelta::Millis(10); timing.set_render_delay(kRenderDelay); wait_time = timing.MaxWaitingTime( timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), /*too_many_frames_queued=*/false); // We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime // (10) to wait. EXPECT_EQ(kMinTotalDelay - kDecodeTime - kRenderDelay, wait_time); // The total video delay should be equal to the min total delay. EXPECT_EQ(kMinTotalDelay, timing.TargetVideoDelay()); // Reset playout delay. timing.set_min_playout_delay(TimeDelta::Zero()); clock.AdvanceTimeMilliseconds(5000); timestamp += 5 * 90000; timing.UpdateCurrentDelay(timestamp); } TEST(ReceiverTimingTest, TimestampWrapAround) { constexpr auto kStartTime = Timestamp::Millis(1337); test::ScopedKeyValueConfig field_trials; SimulatedClock clock(kStartTime); VCMTiming timing(&clock, field_trials); // Provoke a wrap-around. The fifth frame will have wrapped at 25 fps. constexpr uint32_t kRtpTicksPerFrame = k90kHz / k25Fps; uint32_t timestamp = 0xFFFFFFFFu - 3 * kRtpTicksPerFrame; for (int i = 0; i < 5; ++i) { timing.IncomingTimestamp(timestamp, clock.CurrentTime()); clock.AdvanceTime(1 / k25Fps); timestamp += kRtpTicksPerFrame; EXPECT_EQ(kStartTime + 3 / k25Fps, timing.RenderTime(0xFFFFFFFFu, clock.CurrentTime())); // One ms later in 90 kHz. EXPECT_EQ(kStartTime + 3 / k25Fps + TimeDelta::Millis(1), timing.RenderTime(89u, clock.CurrentTime())); } } TEST(ReceiverTimingTest, UseLowLatencyRenderer) { test::ScopedKeyValueConfig field_trials; SimulatedClock clock(0); VCMTiming timing(&clock, field_trials); timing.Reset(); // Default is false. EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering); // False if min playout delay > 0. timing.set_min_playout_delay(TimeDelta::Millis(10)); timing.set_max_playout_delay(TimeDelta::Millis(20)); EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering); // True if min==0, max > 0. timing.set_min_playout_delay(TimeDelta::Zero()); EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering); // True if min==max==0. timing.set_max_playout_delay(TimeDelta::Zero()); EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering); // True also for max playout delay==500 ms. timing.set_max_playout_delay(TimeDelta::Millis(500)); EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering); // False if max playout delay > 500 ms. timing.set_max_playout_delay(TimeDelta::Millis(501)); EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering); } TEST(ReceiverTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) { // This is the default path when the RTP playout delay header extension is set // to min==0 and max==0. constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60); constexpr Timestamp kZeroRenderTime = Timestamp::Zero(); SimulatedClock clock(kStartTimeUs); test::ScopedKeyValueConfig field_trials; VCMTiming timing(&clock, field_trials); timing.Reset(); timing.set_max_playout_delay(TimeDelta::Zero()); for (int i = 0; i < 10; ++i) { clock.AdvanceTime(kTimeDelta); Timestamp now = clock.CurrentTime(); EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); } // Another frame submitted at the same time also returns a negative max // waiting time. Timestamp now = clock.CurrentTime(); EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); // MaxWaitingTime should be less than zero even if there's a burst of frames. EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); } TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) { // The minimum pacing is enabled by a field trial and active if the RTP // playout delay header extension is set to min==0. constexpr TimeDelta kMinPacing = TimeDelta::Millis(3); test::ScopedKeyValueConfig field_trials( "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60); constexpr auto kZeroRenderTime = Timestamp::Zero(); SimulatedClock clock(kStartTimeUs); VCMTiming timing(&clock, field_trials); timing.Reset(); // MaxWaitingTime() returns zero for evenly spaced video frames. for (int i = 0; i < 10; ++i) { clock.AdvanceTime(kTimeDelta); Timestamp now = clock.CurrentTime(); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); timing.SetLastDecodeScheduledTimestamp(now); } // Another frame submitted at the same time is paced according to the field // trial setting. auto now = clock.CurrentTime(); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), kMinPacing); // If there's a burst of frames, the wait time is calculated based on next // decode time. EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), kMinPacing); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), kMinPacing); // Allow a few ms to pass, this should be subtracted from the MaxWaitingTime. constexpr TimeDelta kTwoMs = TimeDelta::Millis(2); clock.AdvanceTime(kTwoMs); now = clock.CurrentTime(); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), kMinPacing - kTwoMs); // A frame is decoded at the current time, the wait time should be restored to // pacing delay. timing.SetLastDecodeScheduledTimestamp(now); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), kMinPacing); } TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) { // The minimum pacing is enabled by a field trial but should not have any // effect if render_time_ms is greater than 0; test::ScopedKeyValueConfig field_trials( "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0); SimulatedClock clock(kStartTimeUs); VCMTiming timing(&clock, field_trials); timing.Reset(); clock.AdvanceTime(kTimeDelta); auto now = clock.CurrentTime(); Timestamp render_time = now + TimeDelta::Millis(30); // Estimate the internal processing delay from the first frame. TimeDelta estimated_processing_delay = (render_time - now) - timing.MaxWaitingTime(render_time, now, /*too_many_frames_queued=*/false); EXPECT_GT(estimated_processing_delay, TimeDelta::Zero()); // Any other frame submitted at the same time should be scheduled according to // its render time. for (int i = 0; i < 5; ++i) { render_time += kTimeDelta; EXPECT_EQ(timing.MaxWaitingTime(render_time, now, /*too_many_frames_queued=*/false), render_time - now - estimated_processing_delay); } } TEST(ReceiverTimingTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) { // The minimum pacing is enabled by a field trial and active if the RTP // playout delay header extension is set to min==0. constexpr TimeDelta kMinPacing = TimeDelta::Millis(3); test::ScopedKeyValueConfig field_trials( "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0); constexpr auto kZeroRenderTime = Timestamp::Zero(); SimulatedClock clock(kStartTimeUs); VCMTiming timing(&clock, field_trials); timing.Reset(); // MaxWaitingTime() returns zero for evenly spaced video frames. for (int i = 0; i < 10; ++i) { clock.AdvanceTime(kTimeDelta); auto now = clock.CurrentTime(); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, /*too_many_frames_queued=*/false), TimeDelta::Zero()); timing.SetLastDecodeScheduledTimestamp(now); } // Another frame submitted at the same time is paced according to the field // trial setting. auto now_ms = clock.CurrentTime(); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms, /*too_many_frames_queued=*/false), kMinPacing); // MaxWaitingTime returns 0 even if there's a burst of frames if // too_many_frames_queued is set to true. EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms, /*too_many_frames_queued=*/true), TimeDelta::Zero()); EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms, /*too_many_frames_queued=*/true), TimeDelta::Zero()); } TEST(ReceiverTimingTest, UpdateCurrentDelayCapsWhenOffByMicroseconds) { test::ScopedKeyValueConfig field_trials; SimulatedClock clock(0); VCMTiming timing(&clock, field_trials); timing.Reset(); // Set larger initial current delay. timing.set_min_playout_delay(TimeDelta::Millis(200)); timing.UpdateCurrentDelay(Timestamp::Millis(900), Timestamp::Millis(1000)); // Add a few microseconds to ensure that the delta of decode time is 0 after // rounding, and should reset to the target delay. timing.set_min_playout_delay(TimeDelta::Millis(50)); Timestamp decode_time = Timestamp::Millis(1337); Timestamp render_time = decode_time + TimeDelta::Millis(10) + TimeDelta::Micros(37); timing.UpdateCurrentDelay(render_time, decode_time); EXPECT_EQ(timing.GetTimings().current_delay, timing.TargetVideoDelay()); } } // namespace webrtc