/* * Copyright 2009 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "p2p/client/basic_port_allocator.h" #include #include // no-presubmit-check TODO(webrtc:8982) #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "p2p/base/basic_packet_socket_factory.h" #include "p2p/base/p2p_constants.h" #include "p2p/base/stun_port.h" #include "p2p/base/stun_request.h" #include "p2p/base/stun_server.h" #include "p2p/base/test_stun_server.h" #include "p2p/base/test_turn_server.h" #include "rtc_base/fake_clock.h" #include "rtc_base/fake_mdns_responder.h" #include "rtc_base/fake_network.h" #include "rtc_base/firewall_socket_server.h" #include "rtc_base/gunit.h" #include "rtc_base/ip_address.h" #include "rtc_base/logging.h" #include "rtc_base/nat_server.h" #include "rtc_base/nat_socket_factory.h" #include "rtc_base/nat_types.h" #include "rtc_base/net_helper.h" #include "rtc_base/net_helpers.h" #include "rtc_base/network.h" #include "rtc_base/network_constants.h" #include "rtc_base/network_monitor.h" #include "rtc_base/socket.h" #include "rtc_base/socket_address.h" #include "rtc_base/socket_address_pair.h" #include "rtc_base/thread.h" #include "rtc_base/virtual_socket_server.h" #include "system_wrappers/include/metrics.h" #include "test/gmock.h" #include "test/gtest.h" #include "test/scoped_key_value_config.h" using rtc::IPAddress; using rtc::SocketAddress; using ::testing::Contains; using ::testing::Not; #define MAYBE_SKIP_IPV4 \ if (!rtc::HasIPv4Enabled()) { \ RTC_LOG(LS_INFO) << "No IPv4... skipping"; \ return; \ } static const SocketAddress kAnyAddr("0.0.0.0", 0); static const SocketAddress kClientAddr("11.11.11.11", 0); static const SocketAddress kClientAddr2("22.22.22.22", 0); static const SocketAddress kLoopbackAddr("127.0.0.1", 0); static const SocketAddress kPrivateAddr("192.168.1.11", 0); static const SocketAddress kPrivateAddr2("192.168.1.12", 0); static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3", 0); static const SocketAddress kClientIPv6Addr2( "2401:fa00:4:2000:be30:5bff:fee5:c3", 0); static const SocketAddress kClientIPv6Addr3( "2401:fa00:4:3000:be30:5bff:fee5:c3", 0); static const SocketAddress kClientIPv6Addr4( "2401:fa00:4:4000:be30:5bff:fee5:c3", 0); static const SocketAddress kClientIPv6Addr5( "2401:fa00:4:5000:be30:5bff:fee5:c3", 0); static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT); static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT); static const SocketAddress kRemoteClientAddr("22.22.22.22", 0); static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT); static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478); static const SocketAddress kTurnUdpIntIPv6Addr( "2402:fb00:4:1000:be30:5bff:fee5:c3", 3479); static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478); static const SocketAddress kTurnTcpIntIPv6Addr( "2402:fb00:4:2000:be30:5bff:fee5:c3", 3479); static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0); // Minimum and maximum port for port range tests. static const int kMinPort = 10000; static const int kMaxPort = 10099; // Based on ICE_UFRAG_LENGTH static const char kIceUfrag0[] = "UF00"; // Based on ICE_PWD_LENGTH static const char kIcePwd0[] = "TESTICEPWD00000000000000"; static const char kContentName[] = "test content"; static const int kDefaultAllocationTimeout = 3000; static const char kTurnUsername[] = "test"; static const char kTurnPassword[] = "test"; // STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT. // Add some margin of error for slow bots. static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT; constexpr uint64_t kTiebreakerDefault = 44444; namespace { void CheckStunKeepaliveIntervalOfAllReadyPorts( const cricket::PortAllocatorSession* allocator_session, int expected) { auto ready_ports = allocator_session->ReadyPorts(); for (const auto* port : ready_ports) { if (port->Type() == cricket::STUN_PORT_TYPE || (port->Type() == cricket::LOCAL_PORT_TYPE && port->GetProtocol() == cricket::PROTO_UDP)) { EXPECT_EQ( static_cast(port)->stun_keepalive_delay(), expected); } } } } // namespace namespace cricket { // Helper for dumping candidates std::ostream& operator<<(std::ostream& os, const std::vector& candidates) { os << '['; bool first = true; for (const Candidate& c : candidates) { if (!first) { os << ", "; } os << c.ToString(); first = false; } os << ']'; return os; } class BasicPortAllocatorTestBase : public ::testing::Test, public sigslot::has_slots<> { public: BasicPortAllocatorTestBase() : vss_(new rtc::VirtualSocketServer()), fss_(new rtc::FirewallSocketServer(vss_.get())), thread_(fss_.get()), // Note that the NAT is not used by default. ResetWithStunServerAndNat // must be called. nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr), nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)), stun_server_(TestStunServer::Create(fss_.get(), kStunAddr)), turn_server_(rtc::Thread::Current(), fss_.get(), kTurnUdpIntAddr, kTurnUdpExtAddr), candidate_allocation_done_(false) { ServerAddresses stun_servers; stun_servers.insert(kStunAddr); allocator_ = std::make_unique( &network_manager_, std::make_unique(fss_.get()), stun_servers, &field_trials_); allocator_->Initialize(); allocator_->set_step_delay(kMinimumStepDelay); allocator_->SetIceTiebreaker(kTiebreakerDefault); webrtc::metrics::Reset(); } void AddInterface(const SocketAddress& addr) { network_manager_.AddInterface(addr); } void AddInterface(const SocketAddress& addr, absl::string_view if_name) { network_manager_.AddInterface(addr, if_name); } void AddInterface(const SocketAddress& addr, absl::string_view if_name, rtc::AdapterType type) { network_manager_.AddInterface(addr, if_name, type); } // The default source address is the public address that STUN server will // observe when the endpoint is sitting on the public internet and the local // port is bound to the "any" address. Intended for simulating the situation // that client binds the "any" address, and that's also the address returned // by getsockname/GetLocalAddress, so that the client can learn the actual // local address only from the STUN response. void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) { AddInterface(addr); // When a binding comes from the any address, the `addr` will be used as the // srflx address. vss_->SetDefaultSourceAddress(addr.ipaddr()); } void RemoveInterface(const SocketAddress& addr) { network_manager_.RemoveInterface(addr); } bool SetPortRange(int min_port, int max_port) { return allocator_->SetPortRange(min_port, max_port); } // Endpoint is on the public network. No STUN or TURN. void ResetWithNoServersOrNat() { allocator_.reset(new BasicPortAllocator( &network_manager_, std::make_unique(fss_.get()))); allocator_->Initialize(); allocator_->SetIceTiebreaker(kTiebreakerDefault); allocator_->set_step_delay(kMinimumStepDelay); } // Endpoint is behind a NAT, with STUN specified. void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) { ResetWithStunServer(stun_server, true); } // Endpoint is on the public network, with STUN specified. void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) { ResetWithStunServer(stun_server, false); } // Endpoint is on the public network, with TURN specified. void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn, const rtc::SocketAddress& tcp_turn) { ResetWithNoServersOrNat(); AddTurnServers(udp_turn, tcp_turn); } RelayServerConfig CreateTurnServers(const rtc::SocketAddress& udp_turn, const rtc::SocketAddress& tcp_turn) { RelayServerConfig turn_server; RelayCredentials credentials(kTurnUsername, kTurnPassword); turn_server.credentials = credentials; if (!udp_turn.IsNil()) { turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP)); } if (!tcp_turn.IsNil()) { turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP)); } return turn_server; } void AddTurnServers(const rtc::SocketAddress& udp_turn, const rtc::SocketAddress& tcp_turn) { RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn); allocator_->AddTurnServerForTesting(turn_server); } bool CreateSession(int component) { session_ = CreateSession("session", component); if (!session_) { return false; } return true; } bool CreateSession(int component, absl::string_view content_name) { session_ = CreateSession("session", content_name, component); if (!session_) { return false; } return true; } std::unique_ptr CreateSession(absl::string_view sid, int component) { return CreateSession(sid, kContentName, component); } std::unique_ptr CreateSession( absl::string_view sid, absl::string_view content_name, int component) { return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0); } std::unique_ptr CreateSession( absl::string_view sid, absl::string_view content_name, int component, absl::string_view ice_ufrag, absl::string_view ice_pwd) { std::unique_ptr session = allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd); session->SignalPortReady.connect(this, &BasicPortAllocatorTestBase::OnPortReady); session->SignalPortsPruned.connect( this, &BasicPortAllocatorTestBase::OnPortsPruned); session->SignalCandidatesReady.connect( this, &BasicPortAllocatorTestBase::OnCandidatesReady); session->SignalCandidatesRemoved.connect( this, &BasicPortAllocatorTestBase::OnCandidatesRemoved); session->SignalCandidatesAllocationDone.connect( this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone); session->set_ice_tiebreaker(kTiebreakerDefault); return session; } // Return true if the addresses are the same, or the port is 0 in `pattern` // (acting as a wildcard) and the IPs are the same. // Even with a wildcard port, the port of the address should be nonzero if // the IP is nonzero. static bool AddressMatch(const SocketAddress& address, const SocketAddress& pattern) { return address.ipaddr() == pattern.ipaddr() && ((pattern.port() == 0 && (address.port() != 0 || IPIsAny(address.ipaddr()))) || (pattern.port() != 0 && address.port() == pattern.port())); } // Returns the number of ports that have matching type, protocol and // address. static int CountPorts(const std::vector& ports, absl::string_view type, ProtocolType protocol, const SocketAddress& client_addr) { return absl::c_count_if( ports, [type, protocol, client_addr](PortInterface* port) { return port->Type() == type && port->GetProtocol() == protocol && port->Network()->GetBestIP() == client_addr.ipaddr(); }); } static int CountCandidates(const std::vector& candidates, absl::string_view type, absl::string_view proto, const SocketAddress& addr) { return absl::c_count_if( candidates, [type, proto, addr](const Candidate& c) { return c.type() == type && c.protocol() == proto && AddressMatch(c.address(), addr); }); } // Find a candidate and return it. static bool FindCandidate(const std::vector& candidates, absl::string_view type, absl::string_view proto, const SocketAddress& addr, Candidate* found) { auto it = absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) { return c.type() == type && c.protocol() == proto && AddressMatch(c.address(), addr); }); if (it != candidates.end() && found) { *found = *it; } return it != candidates.end(); } // Convenience method to call FindCandidate with no return. static bool HasCandidate(const std::vector& candidates, absl::string_view type, absl::string_view proto, const SocketAddress& addr) { return FindCandidate(candidates, type, proto, addr, nullptr); } // Version of HasCandidate that also takes a related address. static bool HasCandidateWithRelatedAddr( const std::vector& candidates, absl::string_view type, absl::string_view proto, const SocketAddress& addr, const SocketAddress& related_addr) { return absl::c_any_of( candidates, [type, proto, addr, related_addr](const Candidate& c) { return c.type() == type && c.protocol() == proto && AddressMatch(c.address(), addr) && AddressMatch(c.related_address(), related_addr); }); } static bool CheckPort(const rtc::SocketAddress& addr, int min_port, int max_port) { return (addr.port() >= min_port && addr.port() <= max_port); } static bool HasNetwork(const std::vector& networks, const rtc::Network& to_be_found) { auto it = absl::c_find_if(networks, [to_be_found](const rtc::Network* network) { return network->description() == to_be_found.description() && network->name() == to_be_found.name() && network->prefix() == to_be_found.prefix(); }); return it != networks.end(); } void OnCandidatesAllocationDone(PortAllocatorSession* session) { // We should only get this callback once, except in the mux test where // we have multiple port allocation sessions. if (session == session_.get()) { ASSERT_FALSE(candidate_allocation_done_); candidate_allocation_done_ = true; } EXPECT_TRUE(session->CandidatesAllocationDone()); } // Check if all ports allocated have send-buffer size `expected`. If // `expected` == -1, check if GetOptions returns SOCKET_ERROR. void CheckSendBufferSizesOfAllPorts(int expected) { std::vector::iterator it; for (it = ports_.begin(); it < ports_.end(); ++it) { int send_buffer_size; if (expected == -1) { EXPECT_EQ(SOCKET_ERROR, (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size)); } else { EXPECT_EQ(0, (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size)); ASSERT_EQ(expected, send_buffer_size); } } } rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); } protected: BasicPortAllocator& allocator() { return *allocator_; } void OnPortReady(PortAllocatorSession* ses, PortInterface* port) { RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString(); ports_.push_back(port); // Make sure the new port is added to ReadyPorts. auto ready_ports = ses->ReadyPorts(); EXPECT_THAT(ready_ports, Contains(port)); } void OnPortsPruned(PortAllocatorSession* ses, const std::vector& pruned_ports) { RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size(); auto ready_ports = ses->ReadyPorts(); auto new_end = ports_.end(); for (PortInterface* port : pruned_ports) { new_end = std::remove(ports_.begin(), new_end, port); // Make sure the pruned port is not in ReadyPorts. EXPECT_THAT(ready_ports, Not(Contains(port))); } ports_.erase(new_end, ports_.end()); } void OnCandidatesReady(PortAllocatorSession* ses, const std::vector& candidates) { for (const Candidate& candidate : candidates) { RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString(); // Sanity check that the ICE component is set. EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component()); candidates_.push_back(candidate); } // Make sure the new candidates are added to Candidates. auto ses_candidates = ses->ReadyCandidates(); for (const Candidate& candidate : candidates) { EXPECT_THAT(ses_candidates, Contains(candidate)); } } void OnCandidatesRemoved(PortAllocatorSession* session, const std::vector& removed_candidates) { auto new_end = std::remove_if( candidates_.begin(), candidates_.end(), [removed_candidates](Candidate& candidate) { for (const Candidate& removed_candidate : removed_candidates) { if (candidate.MatchesForRemoval(removed_candidate)) { return true; } } return false; }); candidates_.erase(new_end, candidates_.end()); } bool HasRelayAddress(const ProtocolAddress& proto_addr) { for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) { RelayServerConfig server_config = allocator_->turn_servers()[i]; PortList::const_iterator relay_port; for (relay_port = server_config.ports.begin(); relay_port != server_config.ports.end(); ++relay_port) { if (proto_addr.address == relay_port->address && proto_addr.proto == relay_port->proto) return true; } } return false; } void ResetWithStunServer(const rtc::SocketAddress& stun_server, bool with_nat) { if (with_nat) { nat_server_.reset(new rtc::NATServer( rtc::NAT_OPEN_CONE, vss_.get(), kNatUdpAddr, kNatTcpAddr, vss_.get(), rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); } else { nat_socket_factory_ = std::make_unique(fss_.get()); } ServerAddresses stun_servers; if (!stun_server.IsNil()) { stun_servers.insert(stun_server); } allocator_.reset(new BasicPortAllocator(&network_manager_, nat_socket_factory_.get(), stun_servers, &field_trials_)); allocator_->Initialize(); allocator_->set_step_delay(kMinimumStepDelay); } std::unique_ptr vss_; std::unique_ptr fss_; rtc::AutoSocketServerThread thread_; std::unique_ptr nat_server_; rtc::NATSocketFactory nat_factory_; std::unique_ptr nat_socket_factory_; std::unique_ptr stun_server_; TestTurnServer turn_server_; rtc::FakeNetworkManager network_manager_; std::unique_ptr allocator_; std::unique_ptr session_; std::vector ports_; std::vector candidates_; bool candidate_allocation_done_; webrtc::test::ScopedKeyValueConfig field_trials_; }; class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase { }; class FakeClockBase { public: rtc::ScopedFakeClock fake_clock; }; class BasicPortAllocatorTest : public FakeClockBase, public BasicPortAllocatorTestBase { public: // This function starts the port/address gathering and check the existence of // candidates as specified. When `expect_stun_candidate` is true, // `stun_candidate_addr` carries the expected reflective address, which is // also the related address for TURN candidate if it is expected. Otherwise, // it should be ignore. void CheckDisableAdapterEnumeration( uint32_t total_ports, const rtc::IPAddress& host_candidate_addr, const rtc::IPAddress& stun_candidate_addr, const rtc::IPAddress& relay_candidate_udp_transport_addr, const rtc::IPAddress& relay_candidate_tcp_transport_addr) { network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(), rtc::IPAddress()); if (!session_) { ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); } session_->set_flags(session_->flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION | PORTALLOCATOR_ENABLE_SHARED_SOCKET); allocator().set_allow_tcp_listen(false); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); uint32_t total_candidates = 0; if (!host_candidate_addr.IsNil()) { EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", rtc::SocketAddress(kPrivateAddr.ipaddr(), 0))); ++total_candidates; } if (!stun_candidate_addr.IsNil()) { rtc::SocketAddress related_address(host_candidate_addr, 0); if (host_candidate_addr.IsNil()) { related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family())); } EXPECT_TRUE(HasCandidateWithRelatedAddr( candidates_, "stun", "udp", rtc::SocketAddress(stun_candidate_addr, 0), related_address)); ++total_candidates; } if (!relay_candidate_udp_transport_addr.IsNil()) { EXPECT_TRUE(HasCandidateWithRelatedAddr( candidates_, "relay", "udp", rtc::SocketAddress(relay_candidate_udp_transport_addr, 0), rtc::SocketAddress(stun_candidate_addr, 0))); ++total_candidates; } if (!relay_candidate_tcp_transport_addr.IsNil()) { EXPECT_TRUE(HasCandidateWithRelatedAddr( candidates_, "relay", "udp", rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0), rtc::SocketAddress(stun_candidate_addr, 0))); ++total_candidates; } EXPECT_EQ(total_candidates, candidates_.size()); EXPECT_EQ(total_ports, ports_.size()); } void TestIPv6TurnPortPrunesIPv4TurnPort() { turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP); // Add two IP addresses on the same interface. AddInterface(kClientAddr, "net1"); AddInterface(kClientIPv6Addr, "net1"); allocator_.reset(new BasicPortAllocator( &network_manager_, std::make_unique(fss_.get()))); allocator_->Initialize(); allocator_->SetConfiguration(allocator_->stun_servers(), allocator_->turn_servers(), 0, webrtc::PRUNE_BASED_ON_PRIORITY); AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress()); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_step_delay(kMinimumStepDelay); allocator_->set_flags( allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready. EXPECT_EQ(3U, session_->ReadyPorts().size()); EXPECT_EQ(3U, ports_.size()); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr)); EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr)); EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr)); // Now that we remove candidates when a TURN port is pruned, there will be // exactly 3 candidates in both `candidates_` and `ready_candidates`. EXPECT_EQ(3U, candidates_.size()); const std::vector& ready_candidates = session_->ReadyCandidates(); EXPECT_EQ(3U, ready_candidates.size()); EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); } void TestTurnPortPrunesWithUdpAndTcpPorts( webrtc::PortPrunePolicy prune_policy, bool tcp_pruned) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddInterface(kClientAddr); allocator_.reset(new BasicPortAllocator( &network_manager_, std::make_unique(fss_.get()))); allocator_->Initialize(); allocator_->SetConfiguration(allocator_->stun_servers(), allocator_->turn_servers(), 0, prune_policy); AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); allocator_->set_step_delay(kMinimumStepDelay); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Only 2 ports (one STUN and one TURN) are actually being used. EXPECT_EQ(2U, session_->ReadyPorts().size()); // We have verified that each port, when it is added to `ports_`, it is // found in `ready_ports`, and when it is pruned, it is not found in // `ready_ports`, so we only need to verify the content in one of them. EXPECT_EQ(2U, ports_.size()); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr)); int num_udp_ports = tcp_pruned ? 1 : 0; EXPECT_EQ(num_udp_ports, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr)); EXPECT_EQ(1 - num_udp_ports, CountPorts(ports_, "relay", PROTO_TCP, kClientAddr)); // Now that we remove candidates when a TURN port is pruned, `candidates_` // should only contains two candidates regardless whether the TCP TURN port // is created before or after the UDP turn port. EXPECT_EQ(2U, candidates_.size()); // There will only be 2 candidates in `ready_candidates` because it only // includes the candidates in the ready ports. const std::vector& ready_candidates = session_->ReadyCandidates(); EXPECT_EQ(2U, ready_candidates.size()); EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr)); // The external candidate is always udp. EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); } void TestEachInterfaceHasItsOwnTurnPorts() { turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP); turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP); // Add two interfaces both having IPv4 and IPv6 addresses. AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR); AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR); allocator_.reset(new BasicPortAllocator( &network_manager_, std::make_unique(fss_.get()))); allocator_->Initialize(); allocator_->SetConfiguration(allocator_->stun_servers(), allocator_->turn_servers(), 0, webrtc::PRUNE_BASED_ON_PRIORITY); // Have both UDP/TCP and IPv4/IPv6 TURN ports. AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr); allocator_->set_step_delay(kMinimumStepDelay); allocator_->set_flags( allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to // use. EXPECT_EQ(10U, session_->ReadyPorts().size()); EXPECT_EQ(10U, ports_.size()); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2)); EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr)); EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2)); // Now that we remove candidates when TURN ports are pruned, there will be // exactly 10 candidates in `candidates_`. EXPECT_EQ(10U, candidates_.size()); const std::vector& ready_candidates = session_->ReadyCandidates(); EXPECT_EQ(10U, ready_candidates.size()); EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr2)); EXPECT_TRUE( HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE( HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr2)); EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr)); EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr2)); EXPECT_TRUE( HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr)); EXPECT_TRUE( HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr2)); EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); } }; // Tests that we can init the port allocator and create a session. TEST_F(BasicPortAllocatorTest, TestBasic) { EXPECT_EQ(&network_manager_, allocator().network_manager()); EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin()); ASSERT_EQ(0u, allocator().turn_servers().size()); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); EXPECT_FALSE(session_->CandidatesAllocationDone()); } // Tests that our network filtering works properly. TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) { AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0", rtc::ADAPTER_TYPE_WIFI); AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0", rtc::ADAPTER_TYPE_VPN); AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo", rtc::ADAPTER_TYPE_LOOPBACK); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(4U, candidates_.size()); for (const Candidate& candidate : candidates_) { EXPECT_LT(candidate.address().ip(), 0x12345604U); } } TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) { AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0", rtc::ADAPTER_TYPE_WIFI); AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET | rtc::ADAPTER_TYPE_LOOPBACK | rtc::ADAPTER_TYPE_WIFI); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(1U, candidates_.size()); EXPECT_EQ(0x12345602U, candidates_[0].address().ip()); } // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and // both Wi-Fi and cell interfaces are available, only Wi-Fi is used. TEST_F(BasicPortAllocatorTest, WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) { SocketAddress wifi(IPAddress(0x12345600U), 0); SocketAddress cell(IPAddress(0x12345601U), 0); AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); // Disable all but UDP candidates to make the test simpler. allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | cricket::PORTALLOCATOR_DISABLE_RELAY | cricket::PORTALLOCATOR_DISABLE_TCP | cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Should only get one Wi-Fi candidate. EXPECT_EQ(1U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi)); } // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and // both "unknown" and cell interfaces are available, only the unknown are used. // The unknown interface may be something that ultimately uses Wi-Fi, so we do // this to be on the safe side. TEST_F(BasicPortAllocatorTest, UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) { SocketAddress cell(IPAddress(0x12345601U), 0); SocketAddress unknown1(IPAddress(0x12345602U), 0); SocketAddress unknown2(IPAddress(0x12345603U), 0); AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN); AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN); // Disable all but UDP candidates to make the test simpler. allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | cricket::PORTALLOCATOR_DISABLE_RELAY | cricket::PORTALLOCATOR_DISABLE_TCP | cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Should only get two candidates, none of which is cell. EXPECT_EQ(2U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown1)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown2)); } // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and // there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi // interface is used. TEST_F(BasicPortAllocatorTest, WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) { SocketAddress wifi(IPAddress(0x12345600U), 0); SocketAddress cellular(IPAddress(0x12345601U), 0); SocketAddress unknown1(IPAddress(0x12345602U), 0); SocketAddress unknown2(IPAddress(0x12345603U), 0); AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN); AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN); // Disable all but UDP candidates to make the test simpler. allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | cricket::PORTALLOCATOR_DISABLE_RELAY | cricket::PORTALLOCATOR_DISABLE_TCP | cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Should only get one Wi-Fi candidate. EXPECT_EQ(1U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi)); } // Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the // only interface available is cellular, it ends up used anyway. A costly // connection is always better than no connection. TEST_F(BasicPortAllocatorTest, CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) { SocketAddress cellular(IPAddress(0x12345601U), 0); AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); // Disable all but UDP candidates to make the test simpler. allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | cricket::PORTALLOCATOR_DISABLE_RELAY | cricket::PORTALLOCATOR_DISABLE_TCP | cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Make sure we got the cell candidate. EXPECT_EQ(1U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular)); } // Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is // a WiFi network with link-local IP address and a cellular network, then the // cellular candidate will still be gathered. TEST_F(BasicPortAllocatorTest, CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) { SocketAddress wifi_link_local("169.254.0.1", 0); SocketAddress cellular(IPAddress(0x12345601U), 0); AddInterface(wifi_link_local, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | cricket::PORTALLOCATOR_DISABLE_RELAY | cricket::PORTALLOCATOR_DISABLE_TCP | cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Make sure we got both wifi and cell candidates. EXPECT_EQ(2U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular)); } // Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is // a WiFi network with link-local IP address, a WiFi network with a normal IP // address and a cellular network, then the cellular candidate will not be // gathered. TEST_F(BasicPortAllocatorTest, CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) { SocketAddress wifi(IPAddress(0x12345600U), 0); SocketAddress wifi_link_local("169.254.0.1", 0); SocketAddress cellular(IPAddress(0x12345601U), 0); AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI); AddInterface(wifi_link_local, "test_wlan1", rtc::ADAPTER_TYPE_WIFI); AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR); allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN | cricket::PORTALLOCATOR_DISABLE_RELAY | cricket::PORTALLOCATOR_DISABLE_TCP | cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Make sure we got only wifi candidates. EXPECT_EQ(2U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local)); } // Test that the adapter types of the Ethernet and the VPN can be correctly // identified so that the Ethernet has a lower network cost than the VPN, and // the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is // set. TEST_F(BasicPortAllocatorTest, EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) { AddInterface(kClientAddr, "eth0", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientAddr2, "tap0", rtc::ADAPTER_TYPE_VPN); allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // The VPN tap0 network should be filtered out as a costly network, and we // should have a UDP port and a STUN port from the Ethernet eth0. ASSERT_EQ(2U, ports_.size()); EXPECT_EQ(ports_[0]->Network()->name(), "eth0"); EXPECT_EQ(ports_[1]->Network()->name(), "eth0"); } // Test that no more than allocator.max_ipv6_networks() IPv6 networks are used // to gather candidates. TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) { // Add three IPv6 network interfaces, but tell the allocator to only use two. allocator().set_max_ipv6_networks(2); AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr3, "eth2", rtc::ADAPTER_TYPE_ETHERNET); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, candidates_.size()); // Ensure the expected two interfaces (eth0 and eth1) were used. EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2)); } // Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from // being used. TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) { // Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks. allocator().set_max_ipv6_networks(1); AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientAddr, "eth2", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientAddr2, "eth3", rtc::ADAPTER_TYPE_ETHERNET); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); // Ensure that only one IPv6 interface was used, but both IPv4 interfaces // were used. EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr2)); } // Test that we could use loopback interface as host candidate. TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) { AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK); allocator_->SetNetworkIgnoreMask(0); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(1U, candidates_.size()); } // Tests that we can get all the desired addresses successfully. TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); } // Test that when the same network interface is brought down and up, the // port allocator session will restart a new allocation sequence if // it is not stopped. TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) { std::string if_name("test_net0"); AddInterface(kClientAddr, if_name); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); candidate_allocation_done_ = false; candidates_.clear(); ports_.clear(); // Disable socket creation to simulate the network interface being down. When // no network interfaces are available, BasicPortAllocator will fall back to // binding to the "ANY" address, so we need to make sure that fails too. fss_->set_tcp_sockets_enabled(false); fss_->set_udp_sockets_enabled(false); RemoveInterface(kClientAddr); SIMULATED_WAIT(false, 1000, fake_clock); EXPECT_EQ(0U, candidates_.size()); ports_.clear(); candidate_allocation_done_ = false; // When the same interfaces are added again, new candidates/ports should be // generated. fss_->set_tcp_sockets_enabled(true); fss_->set_udp_sockets_enabled(true); AddInterface(kClientAddr, if_name); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); } // Test that when the same network interface is brought down and up, the // port allocator session will not restart a new allocation sequence if // it is stopped. TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) { std::string if_name("test_net0"); AddInterface(kClientAddr, if_name); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); session_->StopGettingPorts(); candidates_.clear(); ports_.clear(); RemoveInterface(kClientAddr); // Wait one (simulated) second and then verify no new candidates have // appeared. SIMULATED_WAIT(false, 1000, fake_clock); EXPECT_EQ(0U, candidates_.size()); EXPECT_EQ(0U, ports_.size()); // When the same interfaces are added again, new candidates/ports should not // be generated because the session has stopped. AddInterface(kClientAddr, if_name); SIMULATED_WAIT(false, 1000, fake_clock); EXPECT_EQ(0U, candidates_.size()); EXPECT_EQ(0U, ports_.size()); } // Similar to the above tests, but tests a situation when sockets can't be // bound to a network interface, then after a network change event can be. // Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256 TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) { // Only test local ports to simplify test. ResetWithNoServersOrNat(); // Provide a situation where the interface appears to be available, but // binding the sockets fails. See bug for description of when this can // happen. std::string if_name("test_net0"); AddInterface(kClientAddr, if_name); fss_->set_tcp_sockets_enabled(false); fss_->set_udp_sockets_enabled(false); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Make sure we actually prevented candidates from being gathered (other than // a single TCP active candidate, since that doesn't require creating a // socket). ASSERT_EQ(1U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); candidate_allocation_done_ = false; // Now simulate the interface coming up, with the newfound ability to bind // sockets. fss_->set_tcp_sockets_enabled(true); fss_->set_udp_sockets_enabled(true); AddInterface(kClientAddr, if_name); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Should get UDP and TCP candidate. ASSERT_EQ(2U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); // TODO(deadbeef): This is actually the same active TCP candidate as before. // We should extend this test to also verify that a server candidate is // gathered. EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); } // Verify candidates with default step delay of 1sec. TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) { AddInterface(kClientAddr); allocator_->set_step_delay(kDefaultStepDelay); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); EXPECT_EQ(2U, ports_.size()); ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 2000, fake_clock); EXPECT_EQ(3U, ports_.size()); ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 1500, fake_clock); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); EXPECT_EQ(3U, ports_.size()); EXPECT_TRUE(candidate_allocation_done_); // If we Stop gathering now, we shouldn't get a second "done" callback. session_->StopGettingPorts(); } TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); // If we Stop gathering now, we shouldn't get a second "done" callback. session_->StopGettingPorts(); // All ports should have unset send-buffer sizes. CheckSendBufferSizesOfAllPorts(-1); } // Tests that we can get callback after StopGetAllPorts when called in the // middle of gathering. TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, ports_.size()); session_->StopGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); } // Test that we restrict client ports appropriately when a port range is set. // We check the candidates for udp/stun/tcp ports, and the from address // for relay ports. TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) { AddInterface(kClientAddr); // Check that an invalid port range fails. EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort)); // Check that a null port range succeeds. EXPECT_TRUE(SetPortRange(0, 0)); // Check that a valid port range succeeds. EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort)); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); int num_nonrelay_candidates = 0; for (const Candidate& candidate : candidates_) { // Check the port number for the UDP/STUN/TCP port objects. if (candidate.type() != RELAY_PORT_TYPE) { EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort)); ++num_nonrelay_candidates; } } EXPECT_EQ(3, num_nonrelay_candidates); } // Test that if we have no network adapters, we bind to the ANY address and // still get non-host candidates. TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) { // Default config uses GTURN and no NAT, so replace that with the // desired setup (NAT, STUN server, TURN server, UDP/TCP). ResetWithStunServerAndNat(kStunAddr); turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(4U, ports_.size()); EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr)); EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr)); // Two TURN ports, using UDP/TCP for the first hop to the TURN server. EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr)); EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr)); // The "any" address port should be in the signaled ready ports, but the host // candidate for it is useless and shouldn't be signaled. So we only have // STUN/TURN candidates. EXPECT_EQ(3U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); // Again, two TURN candidates, using UDP/TCP for the first hop to the TURN // server. EXPECT_EQ(2, CountCandidates(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); } // Test that when enumeration is disabled, we should not have any ports when // candidate_filter() is set to CF_RELAY and no relay is specified. TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) { ResetWithStunServerNoNat(kStunAddr); allocator().SetCandidateFilter(CF_RELAY); // Expect to see no ports and no candidates. CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(), rtc::IPAddress(), rtc::IPAddress()); } // Test that even with multiple interfaces, the result should still be a single // default private, one STUN and one TURN candidate since we bind to any address // (i.e. all 0s). TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatMultipleInterfaces) { AddInterface(kPrivateAddr); AddInterface(kPrivateAddr2); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); // Enable IPv6 here. Since the network_manager doesn't have IPv6 default // address set and we have no IPv6 STUN server, there should be no IPv6 // candidates. ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_ENABLE_IPV6); // Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports // for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and // TURN/UDP candidates. CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(), kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(), rtc::IPAddress()); } // Test that we should get a default private, STUN, TURN/UDP and TURN/TCP // candidates when both TURN/UDP and TURN/TCP servers are specified. TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddInterface(kPrivateAddr); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); // Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default // private, STUN, TURN/UDP, and TURN/TCP candidates. CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(), kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(), kTurnUdpExtAddr.ipaddr()); } // Test that when adapter enumeration is disabled, for endpoints without // STUN/TURN specified, a default private candidate is still generated. TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationWithoutNatOrServers) { ResetWithNoServersOrNat(); // Expect to see 2 ports: STUN and TCP ports, one default private candidate. CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(), rtc::IPAddress(), rtc::IPAddress()); } // Test that when adapter enumeration is disabled, with // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind // a NAT, there is no local candidate. TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) { ResetWithStunServerNoNat(kStunAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN // candidate. CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(), rtc::IPAddress(), rtc::IPAddress()); } // Test that when adapter enumeration is disabled, with // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind // a NAT, there is no local candidate. However, this specified default route // (kClientAddr) which was discovered when sending STUN requests, will become // the srflx addresses. TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) { ResetWithStunServerNoNat(kStunAddr); AddInterfaceAsDefaultSourceAddresss(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN // candidate. CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(), rtc::IPAddress(), rtc::IPAddress()); } // Test that when adapter enumeration is disabled, with // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a // NAT, there is only one STUN candidate. TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) { ResetWithStunServerAndNat(kStunAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); // Expect to see 2 ports: STUN and TCP ports, and single STUN candidate. CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(), rtc::IPAddress(), rtc::IPAddress()); } // Test that we disable relay over UDP, and only TCP is used when connecting to // the relay server. TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddInterface(kClientAddr); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY | PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_ENABLE_SHARED_SOCKET); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and // TURN/TCP candidates. EXPECT_EQ(2U, ports_.size()); EXPECT_EQ(2U, candidates_.size()); Candidate turn_candidate; EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", kTurnUdpExtAddr, &turn_candidate)); // The TURN candidate should use TCP to contact the TURN server. EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol()); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); } // Test that we can get OnCandidatesAllocationDone callback when all the ports // are disabled. TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock); EXPECT_EQ(0U, candidates_.size()); } // Test that we don't crash or malfunction if we can't create UDP sockets. TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) { AddInterface(kClientAddr); fss_->set_udp_sockets_enabled(false); ASSERT_TRUE(CreateSession(1)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(1U, candidates_.size()); EXPECT_EQ(1U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); } // Test that we don't crash or malfunction if we can't create UDP sockets or // listen on TCP sockets. We still give out a local TCP address, since // apparently this is needed for the remote side to accept our connection. TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) { AddInterface(kClientAddr); fss_->set_udp_sockets_enabled(false); fss_->set_tcp_listen_enabled(false); ASSERT_TRUE(CreateSession(1)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(1U, candidates_.size()); EXPECT_EQ(1U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); } // Test that we don't crash or malfunction if we can't create any sockets. // TODO(deadbeef): Find a way to exit early here. TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) { AddInterface(kClientAddr); fss_->set_tcp_sockets_enabled(false); fss_->set_udp_sockets_enabled(false); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); SIMULATED_WAIT(candidates_.size() > 0, 2000, fake_clock); // TODO(deadbeef): Check candidate_allocation_done signal. // In case of Relay, ports creation will succeed but sockets will fail. // There is no error reporting from RelayEntry to handle this failure. } // Testing STUN timeout. TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) { fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr); AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); // We wait at least for a full STUN timeout, which // cricket::STUN_TOTAL_TIMEOUT seconds. EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, cricket::STUN_TOTAL_TIMEOUT, fake_clock); // No additional (STUN) candidates. EXPECT_EQ(2U, candidates_.size()); } TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) { AddInterface(kClientAddr); AddInterface(kClientAddr2); // Allocating only host UDP ports. This is done purely for testing // convenience. allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); ASSERT_EQ(2U, candidates_.size()); EXPECT_EQ(2U, ports_.size()); // Candidates priorities should be different. EXPECT_NE(candidates_[0].priority(), candidates_[1].priority()); } // Test to verify ICE restart process. TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); // TODO(deadbeef): Extend this to verify ICE restart. } // Test that the allocator session uses the candidate filter it's created with, // rather than the filter of its parent allocator. // The filter of the allocator should only affect the next gathering phase, // according to JSEP, which means the *next* allocator session returned. TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); // Set candidate filter *after* creating the session. Should have no effect. allocator().SetCandidateFilter(CF_RELAY); session_->StartGettingPorts(); // 7 candidates and 4 ports is what we would normally get (see the // TestGetAllPorts* tests). EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_EQ(3U, ports_.size()); } // Test ICE candidate filter mechanism with options Relay/Host/Reflexive. // This test also verifies that when the allocator is only allowed to use // relay (i.e. IceTransportsType is relay), the raddr is an empty // address with the correct family. This is to prevent any local // reflective address leakage in the sdp line. TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) { AddInterface(kClientAddr); // GTURN is not configured here. ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress()); allocator().SetCandidateFilter(CF_RELAY); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); EXPECT_EQ(1U, candidates_.size()); EXPECT_EQ(1U, ports_.size()); // Only Relay port will be in ready state. EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidates_[0].type()); EXPECT_EQ( candidates_[0].related_address(), rtc::EmptySocketAddressWithFamily(candidates_[0].address().family())); } TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) { AddInterface(kClientAddr); allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET); allocator().SetCandidateFilter(CF_HOST); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, candidates_.size()); // Host UDP/TCP candidates only. EXPECT_EQ(2U, ports_.size()); // UDP/TCP ports only. for (const Candidate& candidate : candidates_) { EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type()); } } // Host is behind the NAT. TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) { AddInterface(kPrivateAddr); ResetWithStunServerAndNat(kStunAddr); allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET); allocator().SetCandidateFilter(CF_REFLEXIVE); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Host is behind NAT, no private address will be exposed. Hence only UDP // port with STUN candidate will be sent outside. EXPECT_EQ(1U, candidates_.size()); // Only STUN candidate. EXPECT_EQ(1U, ports_.size()); // Only UDP port will be in ready state. EXPECT_EQ(std::string(STUN_PORT_TYPE), candidates_[0].type()); EXPECT_EQ( candidates_[0].related_address(), rtc::EmptySocketAddressWithFamily(candidates_[0].address().family())); } // Host is not behind the NAT. TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) { AddInterface(kClientAddr); allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET); allocator().SetCandidateFilter(CF_REFLEXIVE); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Host has a public address, both UDP and TCP candidates will be exposed. EXPECT_EQ(2U, candidates_.size()); // Local UDP + TCP candidate. EXPECT_EQ(2U, ports_.size()); // UDP and TCP ports will be in ready state. for (const Candidate& candidate : candidates_) { EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type()); } } // Test that we get the same ufrag and pwd for all candidates. TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) { AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); EXPECT_EQ(3U, ports_.size()); for (const Candidate& candidate : candidates_) { EXPECT_EQ(kIceUfrag0, candidate.username()); EXPECT_EQ(kIcePwd0, candidate.password()); } } // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port // is allocated for udp and stun. Also verify there is only one candidate // (local) if stun candidate is same as local candidate, which will be the case // in a public network like the below test. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) { AddInterface(kClientAddr); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); } // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port // is allocated for udp and stun. In this test we should expect both stun and // local candidates as client behind a nat. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) { AddInterface(kClientAddr); ResetWithStunServerAndNat(kStunAddr); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout, fake_clock); ASSERT_EQ(2U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); } // Test TURN port in shared socket mode with UDP and TCP TURN server addresses. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddInterface(kClientAddr); allocator_.reset(new BasicPortAllocator( &network_manager_, std::make_unique(fss_.get()))); allocator_->Initialize(); AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); allocator_->set_step_delay(kMinimumStepDelay); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); ASSERT_EQ(3U, candidates_.size()); ASSERT_EQ(3U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); } // Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN // port will not be used if UDP TurnPort is used, given that TCP TURN port // becomes ready first. TEST_F(BasicPortAllocatorTest, TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) { // UDP has longer delay than TCP so that TCP TURN port becomes ready first. virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200); virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100); TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY, true /* tcp_pruned */); } // Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port // will not be used if UDP TurnPort is used, given that UDP TURN port becomes // ready first. TEST_F(BasicPortAllocatorTest, TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) { // UDP has shorter delay than TCP so that UDP TURN port becomes ready first. virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200); TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY, true /* tcp_pruned */); } // Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port // will be kept regardless of the priority. TEST_F(BasicPortAllocatorTest, TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) { // UDP has shorter delay than TCP so that UDP TURN port becomes ready first. virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200); TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY, true /* tcp_pruned */); } // Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port // will be kept regardless of the priority. TEST_F(BasicPortAllocatorTest, TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) { // UDP has longer delay than TCP so that TCP TURN port becomes ready first. virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200); virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100); TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY, false /* tcp_pruned */); } // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4 // TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port // becomes ready first. TEST_F(BasicPortAllocatorTest, TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) { // IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready // first. virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200); TestIPv6TurnPortPrunesIPv4TurnPort(); } // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4 // TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port // becomes ready first. TEST_F(BasicPortAllocatorTest, TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) { // IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready // first. virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200); virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100); TestIPv6TurnPortPrunesIPv4TurnPort(); } // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network // interface will has its own set of TurnPorts based on their priorities, in the // default case where no transit delay is set. TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) { TestEachInterfaceHasItsOwnTurnPorts(); } // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network // interface will has its own set of TurnPorts based on their priorities, given // that IPv4/TCP TURN port becomes ready first. TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) { // IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port // becomes ready last. virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10); virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100); virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20); virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300); TestEachInterfaceHasItsOwnTurnPorts(); } // Testing DNS resolve for the TURN server, this will test AllocationSequence // handling the unresolved address signal from TurnPort. // TODO(pthatcher): Make this test work with SIMULATED_WAIT. It // appears that it doesn't currently because of the DNS look up not // using the fake clock. TEST_F(BasicPortAllocatorTestWithRealClock, TestSharedSocketWithServerAddressResolve) { // This test relies on a real query for "localhost", so it won't work on an // IPv6-only machine. MAYBE_SKIP_IPV4; turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478), PROTO_UDP); AddInterface(kClientAddr); allocator_.reset(new BasicPortAllocator( &network_manager_, std::make_unique(fss_.get()))); allocator_->Initialize(); RelayServerConfig turn_server; RelayCredentials credentials(kTurnUsername, kTurnPassword); turn_server.credentials = credentials; turn_server.ports.push_back( ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP)); allocator_->AddTurnServerForTesting(turn_server); allocator_->set_step_delay(kMinimumStepDelay); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout); } // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port // is allocated for udp/stun/turn. In this test we should expect all local, // stun and turn candidates. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) { AddInterface(kClientAddr); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); ASSERT_EQ(2U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0))); EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); // Local port will be created first and then TURN port. // TODO(deadbeef): This isn't something the BasicPortAllocator API contract // guarantees... EXPECT_EQ(2U, ports_[0]->Candidates().size()); EXPECT_EQ(1U, ports_[1]->Candidates().size()); } // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN // server is also used as the STUN server, we should get 'local', 'stun', and // 'relay' candidates. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) { AddInterface(kClientAddr); // Use an empty SocketAddress to add a NAT without STUN server. ResetWithStunServerAndNat(SocketAddress()); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); // Must set the step delay to 0 to make sure the relay allocation phase is // started before the STUN candidates are obtained, so that the STUN binding // response is processed when both StunPort and TurnPort exist to reproduce // webrtc issue 3537. allocator_->set_step_delay(0); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); Candidate stun_candidate; EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp", rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), &stun_candidate)); EXPECT_TRUE(HasCandidateWithRelatedAddr( candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), stun_candidate.address())); // Local port will be created first and then TURN port. // TODO(deadbeef): This isn't something the BasicPortAllocator API contract // guarantees... EXPECT_EQ(2U, ports_[0]->Candidates().size()); EXPECT_EQ(1U, ports_[1]->Candidates().size()); } // Test that when only a TCP TURN server is available, we do NOT use it as // a UDP STUN server, as this could leak our IP address. Thus we should only // expect two ports, a UDPPort and TurnPort. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddInterface(kClientAddr); ResetWithStunServerAndNat(rtc::SocketAddress()); AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, candidates_.size()); ASSERT_EQ(2U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0))); EXPECT_EQ(1U, ports_[0]->Candidates().size()); EXPECT_EQ(1U, ports_[1]->Candidates().size()); } // Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the // TURN server is used as the STUN server and we get 'local', 'stun', and // 'relay' candidates. // TODO(deadbeef): Remove this test when support for non-shared socket mode // is removed. TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) { AddInterface(kClientAddr); // Use an empty SocketAddress to add a NAT without STUN server. ResetWithStunServerAndNat(SocketAddress()); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); ASSERT_EQ(3U, ports_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); Candidate stun_candidate; EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp", rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), &stun_candidate)); Candidate turn_candidate; EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), &turn_candidate)); // Not using shared socket, so the STUN request's server reflexive address // should be different than the TURN request's server reflexive address. EXPECT_NE(turn_candidate.related_address(), stun_candidate.address()); EXPECT_EQ(1U, ports_[0]->Candidates().size()); EXPECT_EQ(1U, ports_[1]->Candidates().size()); EXPECT_EQ(1U, ports_[2]->Candidates().size()); } // Test that even when both a STUN and TURN server are configured, the TURN // server is used as a STUN server and we get a 'stun' candidate. TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) { AddInterface(kClientAddr); // Configure with STUN server but destroy it, so we can ensure that it's // the TURN server actually being used as a STUN server. ResetWithStunServerAndNat(kStunAddr); stun_server_.reset(); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); Candidate stun_candidate; EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp", rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), &stun_candidate)); EXPECT_TRUE(HasCandidateWithRelatedAddr( candidates_, "relay", "udp", rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0), stun_candidate.address())); // Don't bother waiting for STUN timeout, since we already verified // that we got a STUN candidate from the TURN server. } // This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled // and fail to generate STUN candidate, local UDP candidate is generated // properly. TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) { allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_ENABLE_SHARED_SOCKET); fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr); AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(1U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); // STUN timeout is 9.5sec. We need to wait to get candidate done signal. EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs, fake_clock); EXPECT_EQ(1U, candidates_.size()); } // Test that when the NetworkManager doesn't have permission to enumerate // adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified // automatically. TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) { network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(), rtc::IPAddress()); network_manager_.set_enumeration_permission( rtc::NetworkManager::ENUMERATION_BLOCKED); allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_ENABLE_SHARED_SOCKET); EXPECT_EQ(0U, allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); session_->StartGettingPorts(); EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(1U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kPrivateAddr)); EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); } // This test verifies allocator can use IPv6 addresses along with IPv4. TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) { allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_SHARED_SOCKET); AddInterface(kClientIPv6Addr); AddInterface(kClientAddr); allocator_->set_step_delay(kMinimumStepDelay); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(4U, ports_.size()); EXPECT_EQ(4U, candidates_.size()); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr)); } TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) { AddInterface(kClientAddr); allocator_->set_step_delay(kDefaultStepDelay); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); EXPECT_EQ(2U, ports_.size()); session_->StopGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock); // After stopping getting ports, adding a new interface will not start // getting ports again. allocator_->set_step_delay(kMinimumStepDelay); candidates_.clear(); ports_.clear(); candidate_allocation_done_ = false; network_manager_.AddInterface(kClientAddr2); SIMULATED_WAIT(false, 1000, fake_clock); EXPECT_EQ(0U, candidates_.size()); EXPECT_EQ(0U, ports_.size()); } TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) { AddInterface(kClientAddr); allocator_->set_step_delay(kDefaultStepDelay); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); EXPECT_EQ(2U, ports_.size()); session_->ClearGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock); // After clearing getting ports, adding a new interface will start getting // ports again. allocator_->set_step_delay(kMinimumStepDelay); candidates_.clear(); ports_.clear(); candidate_allocation_done_ = false; network_manager_.AddInterface(kClientAddr2); ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock); EXPECT_EQ(2U, ports_.size()); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); } // Test that the ports and candidates are updated with new ufrag/pwd/etc. when // a pooled session is taken out of the pool. TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) { AddInterface(kClientAddr); int pool_size = 1; allocator_->SetConfiguration(allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE); const PortAllocatorSession* peeked_session = allocator_->GetPooledSession(); ASSERT_NE(nullptr, peeked_session); EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(), kDefaultAllocationTimeout, fake_clock); // Expect that when TakePooledSession is called, // UpdateTransportInformationInternal will be called and the // BasicPortAllocatorSession will update the ufrag/pwd of ports and // candidates. session_ = allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0); ASSERT_NE(nullptr, session_.get()); auto ready_ports = session_->ReadyPorts(); auto candidates = session_->ReadyCandidates(); EXPECT_FALSE(ready_ports.empty()); EXPECT_FALSE(candidates.empty()); for (const PortInterface* port_interface : ready_ports) { const Port* port = static_cast(port_interface); EXPECT_EQ(kContentName, port->content_name()); EXPECT_EQ(1, port->component()); EXPECT_EQ(kIceUfrag0, port->username_fragment()); EXPECT_EQ(kIcePwd0, port->password()); } for (const Candidate& candidate : candidates) { EXPECT_EQ(1, candidate.component()); EXPECT_EQ(kIceUfrag0, candidate.username()); EXPECT_EQ(kIcePwd0, candidate.password()); } } // Test that a new candidate filter takes effect even on already-gathered // candidates. TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) { AddInterface(kClientAddr); int pool_size = 1; allocator_->SetConfiguration(allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE); const PortAllocatorSession* peeked_session = allocator_->GetPooledSession(); ASSERT_NE(nullptr, peeked_session); EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(), kDefaultAllocationTimeout, fake_clock); size_t initial_candidates_size = peeked_session->ReadyCandidates().size(); size_t initial_ports_size = peeked_session->ReadyPorts().size(); allocator_->SetCandidateFilter(CF_RELAY); // Assume that when TakePooledSession is called, the candidate filter will be // applied to the pooled session. This is tested by PortAllocatorTest. session_ = allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0); ASSERT_NE(nullptr, session_.get()); auto candidates = session_->ReadyCandidates(); auto ports = session_->ReadyPorts(); // Sanity check that the number of candidates and ports decreased. EXPECT_GT(initial_candidates_size, candidates.size()); EXPECT_GT(initial_ports_size, ports.size()); for (const PortInterface* port : ports) { // Expect only relay ports. EXPECT_EQ(RELAY_PORT_TYPE, port->Type()); } for (const Candidate& candidate : candidates) { // Expect only relay candidates now that the filter is applied. EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidate.type()); // Expect that the raddr is emptied due to the CF_RELAY filter. EXPECT_EQ(candidate.related_address(), rtc::EmptySocketAddressWithFamily(candidate.address().family())); } } // Test that candidates that do not match a previous candidate filter can be // surfaced if they match the new one after setting the filter value. TEST_F(BasicPortAllocatorTest, SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) { // We would still surface a host candidate if the IP is public, even though it // is disabled by the candidate filter. See // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so // that the srflx candidate is not equivalent to the host candidate. AddInterface(kPrivateAddr); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); allocator_->SetCandidateFilter(CF_NONE); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_TRUE(candidates_.empty()); EXPECT_TRUE(ports_.empty()); // Surface the relay candidate previously gathered but not signaled. session_->SetCandidateFilter(CF_RELAY); ASSERT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type()); EXPECT_EQ(1u, ports_.size()); // Surface the srflx candidate previously gathered but not signaled. session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE); ASSERT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type()); EXPECT_EQ(2u, ports_.size()); // Surface the srflx candidate previously gathered but not signaled. session_->SetCandidateFilter(CF_ALL); ASSERT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type()); EXPECT_EQ(2u, ports_.size()); } // This is a similar test as // SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we // test the transitions for which the new filter value is not a super set of the // previous value. TEST_F( BasicPortAllocatorTest, SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) { // We would still surface a host candidate if the IP is public, even though it // is disabled by the candidate filter. See // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so // that the srflx candidate is not equivalent to the host candidate. AddInterface(kPrivateAddr); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); allocator_->SetCandidateFilter(CF_NONE); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_TRUE(candidates_.empty()); EXPECT_TRUE(ports_.empty()); // Surface the relay candidate previously gathered but not signaled. session_->SetCandidateFilter(CF_RELAY); EXPECT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type()); EXPECT_EQ(1u, ports_.size()); // Surface the srflx candidate previously gathered but not signaled. session_->SetCandidateFilter(CF_REFLEXIVE); EXPECT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type()); EXPECT_EQ(2u, ports_.size()); // Surface the host candidate previously gathered but not signaled. session_->SetCandidateFilter(CF_HOST); EXPECT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type()); // We use a shared socket and cricket::UDPPort handles the srflx candidate. EXPECT_EQ(2u, ports_.size()); } // Test that after an allocation session has stopped getting ports, changing the // candidate filter to allow new types of gathered candidates does not surface // any candidate. TEST_F(BasicPortAllocatorTest, NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) { AddInterface(kPrivateAddr); ResetWithStunServerAndNat(kStunAddr); AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress()); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET | PORTALLOCATOR_DISABLE_TCP); allocator_->SetCandidateFilter(CF_NONE); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); auto test_invariants = [this]() { EXPECT_TRUE(candidates_.empty()); EXPECT_TRUE(ports_.empty()); }; test_invariants(); session_->StopGettingPorts(); session_->SetCandidateFilter(CF_RELAY); SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock); test_invariants(); session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE); SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock); test_invariants(); session_->SetCandidateFilter(CF_ALL); SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock); test_invariants(); } TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) { const int pool_size = 1; const int expected_stun_keepalive_interval = 123; AddInterface(kClientAddr); allocator_->SetConfiguration( allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); auto* pooled_session = allocator_->GetPooledSession(); ASSERT_NE(nullptr, pooled_session); EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(), kDefaultAllocationTimeout, fake_clock); CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session, expected_stun_keepalive_interval); } TEST_F(BasicPortAllocatorTest, ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) { const int pool_size = 1; AddInterface(kClientAddr); allocator_->SetConfiguration( allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE, nullptr, 123 /* stun keepalive interval */); auto* pooled_session = allocator_->GetPooledSession(); ASSERT_NE(nullptr, pooled_session); EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(), kDefaultAllocationTimeout, fake_clock); const int expected_stun_keepalive_interval = 321; allocator_->SetConfiguration( allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session, expected_stun_keepalive_interval); } TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPortsWithSharedSocket) { const int pool_size = 1; const int expected_stun_keepalive_interval = 123; AddInterface(kClientAddr); allocator_->set_flags(allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET); allocator_->SetConfiguration( allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(), expected_stun_keepalive_interval); } TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPortsWithoutSharedSocket) { const int pool_size = 1; const int expected_stun_keepalive_interval = 123; AddInterface(kClientAddr); allocator_->set_flags(allocator().flags() & ~(PORTALLOCATOR_ENABLE_SHARED_SOCKET)); allocator_->SetConfiguration( allocator_->stun_servers(), allocator_->turn_servers(), pool_size, webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(), expected_stun_keepalive_interval); } TEST_F(BasicPortAllocatorTest, IceRegatheringMetricsLoggedWhenNetworkChanges) { // Only test local ports to simplify test. ResetWithNoServersOrNat(); AddInterface(kClientAddr, "test_net0"); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); candidate_allocation_done_ = false; AddInterface(kClientAddr2, "test_net1"); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_METRIC_EQ(1, webrtc::metrics::NumEvents( "WebRTC.PeerConnection.IceRegatheringReason", static_cast(IceRegatheringReason::NETWORK_CHANGE))); } // Test that when an mDNS responder is present, the local address of a host // candidate is concealed by an mDNS hostname and the related address of a srflx // candidate is set to 0.0.0.0 or ::0. TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) { // Default config uses GTURN and no NAT, so replace that with the // desired setup (NAT, STUN server, TURN server, UDP/TCP). ResetWithStunServerAndNat(kStunAddr); turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP); AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr); ASSERT_EQ(&network_manager_, allocator().network_manager()); network_manager_.set_mdns_responder( std::make_unique(rtc::Thread::Current())); AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(5u, candidates_.size()); int num_host_udp_candidates = 0; int num_host_tcp_candidates = 0; int num_srflx_candidates = 0; int num_relay_candidates = 0; for (const auto& candidate : candidates_) { const auto& raddr = candidate.related_address(); if (candidate.type() == LOCAL_PORT_TYPE) { EXPECT_FALSE(candidate.address().hostname().empty()); EXPECT_TRUE(raddr.IsNil()); if (candidate.protocol() == UDP_PROTOCOL_NAME) { ++num_host_udp_candidates; } else { ++num_host_tcp_candidates; } } else if (candidate.type() == STUN_PORT_TYPE) { // For a srflx candidate, the related address should be set to 0.0.0.0 or // ::0 EXPECT_TRUE(IPIsAny(raddr.ipaddr())); EXPECT_EQ(raddr.port(), 0); ++num_srflx_candidates; } else if (candidate.type() == RELAY_PORT_TYPE) { EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr()); EXPECT_EQ(kNatUdpAddr.family(), raddr.family()); ++num_relay_candidates; } else { // prflx candidates are not expected FAIL(); } } EXPECT_EQ(1, num_host_udp_candidates); EXPECT_EQ(1, num_host_tcp_candidates); EXPECT_EQ(1, num_srflx_candidates); EXPECT_EQ(2, num_relay_candidates); } TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) { ServerAddresses stun_servers; stun_servers.insert(kStunAddr); PortConfiguration port_config(stun_servers, "", ""); RelayServerConfig turn_servers = CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); port_config.AddRelay(turn_servers); EXPECT_EQ(2U, port_config.StunServers().size()); } TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) { webrtc::test::ScopedKeyValueConfig field_trials( "WebRTC-UseTurnServerAsStunServer/Disabled/"); ServerAddresses stun_servers; stun_servers.insert(kStunAddr); PortConfiguration port_config(stun_servers, "" /* user_name */, "" /* password */, &field_trials); RelayServerConfig turn_servers = CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr); port_config.AddRelay(turn_servers); EXPECT_EQ(1U, port_config.StunServers().size()); } // Test that candidates from different servers get assigned a unique local // preference (the middle 16 bits of the priority) TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) { allocator_->SetCandidateFilter(CF_RELAY); allocator_->AddTurnServerForTesting( CreateTurnServers(kTurnUdpIntAddr, SocketAddress())); allocator_->AddTurnServerForTesting( CreateTurnServers(kTurnUdpIntAddr, SocketAddress())); allocator_->AddTurnServerForTesting( CreateTurnServers(kTurnUdpIntAddr, SocketAddress())); AddInterface(kClientAddr); ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3u, candidates_.size()); EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF, (candidates_[1].priority() >> 8) & 0xFFFF); EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF, (candidates_[2].priority() >> 8) & 0xFFFF); } // Test that no more than allocator.max_ipv6_networks() IPv6 networks are used // to gather candidates. TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) { rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); rtc::Network wifi2("wifi2", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); std::vector networks = {&wifi1, ðe1, &wifi2}; // Ensure that only 2 interfaces were selected. EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks( networks, /*max_ipv6_networks=*/2) .size()); } // Test that if the number of available IPv6 networks is less than // allocator.max_ipv6_networks(), all IPv6 networks will be selected. TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) { rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); std::vector networks = {&wifi1, ðe1}; // Ensure that all 2 interfaces were selected. EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks( networks, /*max_ipv6_networks=*/3) .size()); } // If there are some IPv6 networks with different types, diversify IPv6 // networks. TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) { rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); rtc::Network ethe2("ethe2", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); rtc::Network unknown1("unknown1", "Test NetworkAdapter 4", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_UNKNOWN); rtc::Network cell1("cell1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_4G); std::vector networks = {&wifi1, ðe1, ðe2, &unknown1, &cell1}; networks = BasicPortAllocatorSession::SelectIPv6Networks( networks, /*max_ipv6_networks=*/4); EXPECT_EQ(4U, networks.size()); // Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were // selected. EXPECT_TRUE(HasNetwork(networks, wifi1)); EXPECT_TRUE(HasNetwork(networks, ethe1)); EXPECT_TRUE(HasNetwork(networks, cell1)); EXPECT_TRUE(HasNetwork(networks, unknown1)); } // If there are some IPv6 networks with the same type, select them because there // is no other option. TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) { // Add 5 cellular interfaces rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_2G); rtc::Network cell2("cell2", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_3G); rtc::Network cell3("cell3", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_4G); rtc::Network cell4("cell4", "Test NetworkAdapter 4", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_5G); rtc::Network cell5("cell5", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_3G); std::vector networks = {&cell1, &cell2, &cell3, &cell4, &cell5}; // Ensure that 4 interfaces were selected. EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks( networks, /*max_ipv6_networks=*/4) .size()); } TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) { rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); rtc::Network wifi2("wifi2", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); std::vector networks = {&wifi1, ðe1, &wifi2}; networks = BasicPortAllocatorSession::SelectIPv6Networks( networks, /*max_ipv6_networks=*/1); EXPECT_EQ(1U, networks.size()); // Ensure ethe1 was selected. EXPECT_TRUE(HasNetwork(networks, ethe1)); } TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) { rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(), 64, rtc::ADAPTER_TYPE_CELLULAR_3G); rtc::Network ethe1("ethe1", "Test NetworkAdapter 2", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET); rtc::Network wifi1("wifi1", "Test NetworkAdapter 3", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI); rtc::Network unknown("unknown", "Test NetworkAdapter 4", kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_UNKNOWN); rtc::Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_VPN); std::vector networks = {&cell1, ðe1, &wifi1, &unknown, &vpn1}; networks = BasicPortAllocatorSession::SelectIPv6Networks( networks, /*max_ipv6_networks=*/2); EXPECT_EQ(2U, networks.size()); // Ensure ethe1 and wifi1 were selected. EXPECT_TRUE(HasNetwork(networks, wifi1)); EXPECT_TRUE(HasNetwork(networks, ethe1)); } // Do not change the default IPv6 selection behavior if // IPv6NetworkResolutionFixes is disabled. TEST_F(BasicPortAllocatorTest, NotDiversifyIPv6NetworkTypesIfIPv6NetworkResolutionFixesDisabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-IPv6NetworkResolutionFixes/Disabled/"); // Add three IPv6 network interfaces, but tell the allocator to only use two. allocator().set_max_ipv6_networks(2); AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, candidates_.size()); // Wifi1 was not selected because it comes after ethe1 and ethe2. EXPECT_FALSE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); } // Do not change the default IPv6 selection behavior if // IPv6NetworkResolutionFixes is enabled but DiversifyIpv6Interfaces is not // enabled. TEST_F(BasicPortAllocatorTest, NotDiversifyIPv6NetworkTypesIfDiversifyIpv6InterfacesDisabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-IPv6NetworkResolutionFixes/" "Enabled,DiversifyIpv6Interfaces:false/"); // Add three IPv6 network interfaces, but tell the allocator to only use two. allocator().set_max_ipv6_networks(2); AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, candidates_.size()); // Wifi1 was not selected because it comes after ethe1 and ethe2. EXPECT_FALSE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); } TEST_F(BasicPortAllocatorTest, Select2DifferentIntefacesIfDiversifyIpv6InterfacesEnabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-IPv6NetworkResolutionFixes/" "Enabled,DiversifyIpv6Interfaces:true/"); allocator().set_max_ipv6_networks(2); AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(2U, candidates_.size()); // ethe1 and wifi1 were selected. EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); } TEST_F(BasicPortAllocatorTest, Select3DifferentIntefacesIfDiversifyIpv6InterfacesEnabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-IPv6NetworkResolutionFixes/" "Enabled,DiversifyIpv6Interfaces:true/"); allocator().set_max_ipv6_networks(3); AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(3U, candidates_.size()); // ethe1, wifi1, and cell1 were selected. EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5)); } TEST_F(BasicPortAllocatorTest, Select4DifferentIntefacesIfDiversifyIpv6InterfacesEnabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-IPv6NetworkResolutionFixes/" "Enabled,DiversifyIpv6Interfaces:true/"); allocator().set_max_ipv6_networks(4); AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET); AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI); AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G); // To simplify the test, only gather UDP host candidates. allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI); ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP)); session_->StartGettingPorts(); EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout, fake_clock); EXPECT_EQ(4U, candidates_.size()); // ethe1, ethe2, wifi1, and cell1 were selected. EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3)); EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5)); } } // namespace cricket