/* * Copyright 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_utils/repeating_task.h" #include #include #include "absl/functional/any_invocable.h" #include "api/task_queue/task_queue_base.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "rtc_base/event.h" #include "rtc_base/task_queue_for_test.h" #include "system_wrappers/include/clock.h" #include "test/gmock.h" #include "test/gtest.h" // NOTE: Since these tests rely on real time behavior, they will be flaky // if run on heavily loaded systems. namespace webrtc { namespace { using ::testing::AtLeast; using ::testing::Invoke; using ::testing::MockFunction; using ::testing::NiceMock; using ::testing::Return; constexpr TimeDelta kTimeout = TimeDelta::Millis(1000); class MockClosure { public: MOCK_METHOD(TimeDelta, Call, ()); MOCK_METHOD(void, Delete, ()); }; class MockTaskQueue : public TaskQueueBase { public: MockTaskQueue() : task_queue_setter_(this) {} MOCK_METHOD(void, Delete, (), (override)); MOCK_METHOD(void, PostTask, (absl::AnyInvocable), (override)); MOCK_METHOD(void, PostDelayedTask, (absl::AnyInvocable, TimeDelta), (override)); MOCK_METHOD(void, PostDelayedHighPrecisionTask, (absl::AnyInvocable, TimeDelta), (override)); private: CurrentTaskQueueSetter task_queue_setter_; }; class FakeTaskQueue : public TaskQueueBase { public: explicit FakeTaskQueue(SimulatedClock* clock) : task_queue_setter_(this), clock_(clock) {} void Delete() override {} void PostTask(absl::AnyInvocable task) override { last_task_ = std::move(task); last_precision_ = absl::nullopt; last_delay_ = TimeDelta::Zero(); } void PostDelayedTask(absl::AnyInvocable task, TimeDelta delay) override { last_task_ = std::move(task); last_precision_ = TaskQueueBase::DelayPrecision::kLow; last_delay_ = delay; } void PostDelayedHighPrecisionTask(absl::AnyInvocable task, TimeDelta delay) override { last_task_ = std::move(task); last_precision_ = TaskQueueBase::DelayPrecision::kHigh; last_delay_ = delay; } bool AdvanceTimeAndRunLastTask() { EXPECT_TRUE(last_task_); EXPECT_TRUE(last_delay_.IsFinite()); clock_->AdvanceTime(last_delay_); last_delay_ = TimeDelta::MinusInfinity(); auto task = std::move(last_task_); std::move(task)(); return last_task_ == nullptr; } bool IsTaskQueued() { return !!last_task_; } TimeDelta last_delay() const { EXPECT_TRUE(last_delay_.IsFinite()); return last_delay_; } absl::optional last_precision() const { return last_precision_; } private: CurrentTaskQueueSetter task_queue_setter_; SimulatedClock* clock_; absl::AnyInvocable last_task_; TimeDelta last_delay_ = TimeDelta::MinusInfinity(); absl::optional last_precision_; }; // NOTE: Since this utility class holds a raw pointer to a variable that likely // lives on the stack, it's important that any repeating tasks that use this // class be explicitly stopped when the test criteria have been met. If the // task is not stopped, an instance of this class can be deleted when the // pointed-to MockClosure has been deleted and we end up trying to call a // virtual method on a deleted object in the dtor. class MoveOnlyClosure { public: explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {} MoveOnlyClosure(const MoveOnlyClosure&) = delete; MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) { other.mock_ = nullptr; } ~MoveOnlyClosure() { if (mock_) mock_->Delete(); } TimeDelta operator()() { return mock_->Call(); } private: MockClosure* mock_; }; } // namespace TEST(RepeatingTaskTest, TaskIsStoppedOnStop) { const TimeDelta kShortInterval = TimeDelta::Millis(50); SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); std::atomic_int counter(0); auto handle = RepeatingTaskHandle::Start( &task_queue, [&] { counter++; return kShortInterval; }, TaskQueueBase::DelayPrecision::kLow, &clock); EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero()); EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask()); EXPECT_EQ(counter.load(), 1); // The handle reposted at the short interval. EXPECT_EQ(task_queue.last_delay(), kShortInterval); // Stop the handle. This prevernts the counter from incrementing. handle.Stop(); EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask()); EXPECT_EQ(counter.load(), 1); } TEST(RepeatingTaskTest, CompensatesForLongRunTime) { const TimeDelta kRepeatInterval = TimeDelta::Millis(2); // Sleeping inside the task for longer than the repeat interval once, should // be compensated for by repeating the task faster to catch up. const TimeDelta kSleepDuration = TimeDelta::Millis(20); std::atomic_int counter(0); SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); RepeatingTaskHandle::Start( &task_queue, [&] { ++counter; // Task takes longer than the repeat duration. clock.AdvanceTime(kSleepDuration); return kRepeatInterval; }, TaskQueueBase::DelayPrecision::kLow, &clock); EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero()); EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask()); // Task is posted right away since it took longer to run then the repeat // interval. EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero()); EXPECT_EQ(counter.load(), 1); } TEST(RepeatingTaskTest, CompensatesForShortRunTime) { SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); std::atomic_int counter(0); RepeatingTaskHandle::Start( &task_queue, [&] { // Simulate the task taking 100ms, which should be compensated for. counter++; clock.AdvanceTime(TimeDelta::Millis(100)); return TimeDelta::Millis(300); }, TaskQueueBase::DelayPrecision::kLow, &clock); // Expect instant post task. EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero()); // Task should be retained by the handler since it is not cancelled. EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask()); // New delay should be 200ms since repeat delay was 300ms but task took 100ms. EXPECT_EQ(task_queue.last_delay(), TimeDelta::Millis(200)); } TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) { rtc::Event done; MockClosure mock; EXPECT_CALL(mock, Call).Times(0); EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); })); TaskQueueForTest task_queue("queue"); auto handle = RepeatingTaskHandle::DelayedStart( task_queue.Get(), TimeDelta::Millis(100), MoveOnlyClosure(&mock)); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); EXPECT_TRUE(done.Wait(kTimeout)); } TEST(RepeatingTaskTest, CancelTaskAfterItRuns) { rtc::Event done; MockClosure mock; EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::Millis(100))); EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); })); TaskQueueForTest task_queue("queue"); auto handle = RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock)); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); EXPECT_TRUE(done.Wait(kTimeout)); } TEST(RepeatingTaskTest, TaskCanStopItself) { std::atomic_int counter(0); SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] { ++counter; handle.Stop(); return TimeDelta::Millis(2); }); EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero()); // Task cancelled itself so wants to be released. EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask()); EXPECT_EQ(counter.load(), 1); } TEST(RepeatingTaskTest, TaskCanStopItselfByReturningInfinity) { std::atomic_int counter(0); SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] { ++counter; return TimeDelta::PlusInfinity(); }); EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero()); // Task cancelled itself so wants to be released. EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask()); EXPECT_EQ(counter.load(), 1); } TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) { NiceMock closure; rtc::Event done; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Zero())) .WillOnce(Invoke([&] { done.Set(); return TimeDelta::PlusInfinity(); })); TaskQueueForTest task_queue("queue"); RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure)); EXPECT_TRUE(done.Wait(kTimeout)); } TEST(RepeatingTaskTest, StartPeriodicTask) { MockFunction closure; rtc::Event done; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Millis(20))) .WillOnce(Return(TimeDelta::Millis(20))) .WillOnce(Invoke([&] { done.Set(); return TimeDelta::PlusInfinity(); })); TaskQueueForTest task_queue("queue"); RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction()); EXPECT_TRUE(done.Wait(kTimeout)); } TEST(RepeatingTaskTest, Example) { class ObjectOnTaskQueue { public: void DoPeriodicTask() {} TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); } void StartPeriodicTask(RepeatingTaskHandle* handle, TaskQueueBase* task_queue) { *handle = RepeatingTaskHandle::Start(task_queue, [this] { DoPeriodicTask(); return TimeUntilNextRun(); }); } }; TaskQueueForTest task_queue("queue"); auto object = std::make_unique(); // Create and start the periodic task. RepeatingTaskHandle handle; object->StartPeriodicTask(&handle, task_queue.Get()); // Restart the task task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); object->StartPeriodicTask(&handle, task_queue.Get()); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); struct Destructor { void operator()() { object.reset(); } std::unique_ptr object; }; task_queue.PostTask(Destructor{std::move(object)}); // Do not wait for the destructor closure in order to create a race between // task queue destruction and running the desctructor closure. } TEST(RepeatingTaskTest, ClockIntegration) { absl::AnyInvocable delayed_task; TimeDelta expected_delay = TimeDelta::Zero(); SimulatedClock clock(Timestamp::Zero()); NiceMock task_queue; ON_CALL(task_queue, PostDelayedTask) .WillByDefault([&](absl::AnyInvocable task, TimeDelta delay) { EXPECT_EQ(delay, expected_delay); delayed_task = std::move(task); }); expected_delay = TimeDelta::Millis(100); RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart( &task_queue, TimeDelta::Millis(100), [&clock]() { EXPECT_EQ(Timestamp::Millis(100), clock.CurrentTime()); // Simulate work happening for 10ms. clock.AdvanceTimeMilliseconds(10); return TimeDelta::Millis(100); }, TaskQueueBase::DelayPrecision::kLow, &clock); clock.AdvanceTimeMilliseconds(100); absl::AnyInvocable task_to_run = std::move(delayed_task); expected_delay = TimeDelta::Millis(90); std::move(task_to_run)(); EXPECT_NE(delayed_task, nullptr); handle.Stop(); } TEST(RepeatingTaskTest, CanBeStoppedAfterTaskQueueDeletedTheRepeatingTask) { absl::AnyInvocable repeating_task; MockTaskQueue task_queue; EXPECT_CALL(task_queue, PostDelayedTask) .WillOnce([&](absl::AnyInvocable task, TimeDelta delay) { repeating_task = std::move(task); }); RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart(&task_queue, TimeDelta::Millis(100), [] { return TimeDelta::Millis(100); }); // shutdown task queue: delete all pending tasks and run 'regular' task. repeating_task = nullptr; handle.Stop(); } TEST(RepeatingTaskTest, DefaultPrecisionIsLow) { SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); // Closure that repeats twice. MockFunction closure; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Millis(1))) .WillOnce(Return(TimeDelta::PlusInfinity())); RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction()); // Initial task is a PostTask(). EXPECT_FALSE(task_queue.last_precision().has_value()); EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask()); // Repeated task is a delayed task with the default precision: low. EXPECT_TRUE(task_queue.last_precision().has_value()); EXPECT_EQ(task_queue.last_precision().value(), TaskQueueBase::DelayPrecision::kLow); // No more tasks. EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask()); } TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithLowPrecision) { SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); // Closure that repeats twice. MockFunction closure; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Millis(1))) .WillOnce(Return(TimeDelta::PlusInfinity())); RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(), TaskQueueBase::DelayPrecision::kLow); // Initial task is a PostTask(). EXPECT_FALSE(task_queue.last_precision().has_value()); EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask()); // Repeated task is a delayed task with the specified precision. EXPECT_TRUE(task_queue.last_precision().has_value()); EXPECT_EQ(task_queue.last_precision().value(), TaskQueueBase::DelayPrecision::kLow); // No more tasks. EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask()); } TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithHighPrecision) { SimulatedClock clock(Timestamp::Zero()); FakeTaskQueue task_queue(&clock); // Closure that repeats twice. MockFunction closure; EXPECT_CALL(closure, Call()) .WillOnce(Return(TimeDelta::Millis(1))) .WillOnce(Return(TimeDelta::PlusInfinity())); RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(), TaskQueueBase::DelayPrecision::kHigh); // Initial task is a PostTask(). EXPECT_FALSE(task_queue.last_precision().has_value()); EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask()); // Repeated task is a delayed task with the specified precision. EXPECT_TRUE(task_queue.last_precision().has_value()); EXPECT_EQ(task_queue.last_precision().value(), TaskQueueBase::DelayPrecision::kHigh); // No more tasks. EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask()); } } // namespace webrtc