/* * Copyright 2006 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #if defined(WEBRTC_POSIX) #include #endif #include #include #include #include "absl/memory/memory.h" #include "api/units/time_delta.h" #include "rtc_base/arraysize.h" #include "rtc_base/async_packet_socket.h" #include "rtc_base/async_udp_socket.h" #include "rtc_base/fake_clock.h" #include "rtc_base/gunit.h" #include "rtc_base/ip_address.h" #include "rtc_base/logging.h" #include "rtc_base/socket.h" #include "rtc_base/socket_address.h" #include "rtc_base/task_utils/repeating_task.h" #include "rtc_base/test_client.h" #include "rtc_base/test_utils.h" #include "rtc_base/third_party/sigslot/sigslot.h" #include "rtc_base/thread.h" #include "rtc_base/time_utils.h" #include "rtc_base/virtual_socket_server.h" #include "test/gtest.h" namespace rtc { namespace { using ::webrtc::RepeatingTaskHandle; using ::webrtc::TimeDelta; using ::webrtc::testing::SSE_CLOSE; using ::webrtc::testing::SSE_ERROR; using ::webrtc::testing::SSE_OPEN; using ::webrtc::testing::SSE_READ; using ::webrtc::testing::SSE_WRITE; using ::webrtc::testing::StreamSink; // Sends at a constant rate but with random packet sizes. struct Sender { Sender(Thread* th, Socket* s, uint32_t rt) : thread(th), socket(std::make_unique(s)), rate(rt), count(0) { last_send = rtc::TimeMillis(); periodic = RepeatingTaskHandle::DelayedStart(thread, NextDelay(), [this] { int64_t cur_time = rtc::TimeMillis(); int64_t delay = cur_time - last_send; uint32_t size = std::clamp(rate * delay / 1000, sizeof(uint32_t), 4096); count += size; memcpy(dummy, &cur_time, sizeof(cur_time)); socket->Send(dummy, size, options); last_send = cur_time; return NextDelay(); }); } TimeDelta NextDelay() { int size = (rand() % 4096) + 1; return TimeDelta::Seconds(1) * size / rate; } Thread* thread; std::unique_ptr socket; rtc::PacketOptions options; RepeatingTaskHandle periodic; uint32_t rate; // bytes per second uint32_t count; int64_t last_send; char dummy[4096]; }; struct Receiver : public sigslot::has_slots<> { Receiver(Thread* th, Socket* s, uint32_t bw) : thread(th), socket(std::make_unique(s)), bandwidth(bw), count(0), sec_count(0), sum(0), sum_sq(0), samples(0) { socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket); periodic = RepeatingTaskHandle::DelayedStart( thread, TimeDelta::Seconds(1), [this] { // It is always possible for us to receive more than expected because // packets can be further delayed in delivery. if (bandwidth > 0) { EXPECT_LE(sec_count, 5 * bandwidth / 4); } sec_count = 0; return TimeDelta::Seconds(1); }); } ~Receiver() override { periodic.Stop(); } void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size, const SocketAddress& remote_addr, const int64_t& /* packet_time_us */) { ASSERT_EQ(socket.get(), s); ASSERT_GE(size, 4U); count += size; sec_count += size; uint32_t send_time = *reinterpret_cast(data); uint32_t recv_time = rtc::TimeMillis(); uint32_t delay = recv_time - send_time; sum += delay; sum_sq += delay * delay; samples += 1; } Thread* thread; std::unique_ptr socket; uint32_t bandwidth; RepeatingTaskHandle periodic; size_t count; size_t sec_count; double sum; double sum_sq; uint32_t samples; }; // Note: This test uses a fake clock in addition to a virtual network. class VirtualSocketServerTest : public ::testing::Test { public: VirtualSocketServerTest() : ss_(&fake_clock_), thread_(&ss_), kIPv4AnyAddress(IPAddress(INADDR_ANY), 0), kIPv6AnyAddress(IPAddress(in6addr_any), 0) {} void CheckPortIncrementalization(const SocketAddress& post, const SocketAddress& pre) { EXPECT_EQ(post.port(), pre.port() + 1); IPAddress post_ip = post.ipaddr(); IPAddress pre_ip = pre.ipaddr(); EXPECT_EQ(pre_ip.family(), post_ip.family()); if (post_ip.family() == AF_INET) { in_addr pre_ipv4 = pre_ip.ipv4_address(); in_addr post_ipv4 = post_ip.ipv4_address(); EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr); } else if (post_ip.family() == AF_INET6) { in6_addr post_ip6 = post_ip.ipv6_address(); in6_addr pre_ip6 = pre_ip.ipv6_address(); uint32_t* post_as_ints = reinterpret_cast(&post_ip6.s6_addr); uint32_t* pre_as_ints = reinterpret_cast(&pre_ip6.s6_addr); EXPECT_EQ(post_as_ints[3], pre_as_ints[3]); } } // Test a client can bind to the any address, and all sent packets will have // the default source address. Also, it can receive packets sent to the // default address. void TestDefaultSourceAddress(const IPAddress& default_address) { ss_.SetDefaultSourceAddress(default_address); // Create client1 bound to the any address. Socket* socket = ss_.CreateSocket(default_address.family(), SOCK_DGRAM); socket->Bind(EmptySocketAddressWithFamily(default_address.family())); SocketAddress client1_any_addr = socket->GetLocalAddress(); EXPECT_TRUE(client1_any_addr.IsAnyIP()); auto client1 = std::make_unique( std::make_unique(socket), &fake_clock_); // Create client2 bound to the address route. Socket* socket2 = ss_.CreateSocket(default_address.family(), SOCK_DGRAM); socket2->Bind(SocketAddress(default_address, 0)); SocketAddress client2_addr = socket2->GetLocalAddress(); EXPECT_FALSE(client2_addr.IsAnyIP()); auto client2 = std::make_unique( std::make_unique(socket2), &fake_clock_); // Client1 sends to client2, client2 should see the default address as // client1's address. SocketAddress client1_addr; EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); EXPECT_EQ(client1_addr, SocketAddress(default_address, client1_any_addr.port())); // Client2 can send back to client1's default address. EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr)); EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); } void BasicTest(const SocketAddress& initial_addr) { Socket* socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); socket->Bind(initial_addr); SocketAddress server_addr = socket->GetLocalAddress(); // Make sure VSS didn't switch families on us. EXPECT_EQ(server_addr.family(), initial_addr.family()); auto client1 = std::make_unique( std::make_unique(socket), &fake_clock_); Socket* socket2 = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); auto client2 = std::make_unique( std::make_unique(socket2), &fake_clock_); SocketAddress client2_addr; EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); SocketAddress client1_addr; EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); EXPECT_EQ(client1_addr, server_addr); SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family()); for (int i = 0; i < 10; i++) { client2 = std::make_unique( absl::WrapUnique(AsyncUDPSocket::Create(&ss_, empty)), &fake_clock_); SocketAddress next_client2_addr; EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr)); CheckPortIncrementalization(next_client2_addr, client2_addr); // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1); SocketAddress server_addr2; EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr)); EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2)); EXPECT_EQ(server_addr2, server_addr); client2_addr = next_client2_addr; } } // initial_addr should be made from either INADDR_ANY or in6addr_any. void ConnectTest(const SocketAddress& initial_addr) { StreamSink sink; SocketAddress accept_addr; const SocketAddress kEmptyAddr = EmptySocketAddressWithFamily(initial_addr.family()); // Create client std::unique_ptr client = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(client.get()); EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); EXPECT_TRUE(client->GetLocalAddress().IsNil()); // Create server std::unique_ptr server = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(server.get()); EXPECT_NE(0, server->Listen(5)); // Bind required EXPECT_EQ(0, server->Bind(initial_addr)); EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, server->Listen(5)); EXPECT_EQ(server->GetState(), Socket::CS_CONNECTING); // No pending server connections EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); EXPECT_TRUE(nullptr == server->Accept(&accept_addr)); EXPECT_EQ(AF_UNSPEC, accept_addr.family()); // Attempt connect to listening socket EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family()); // Implicit Bind EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress()); // Client is connecting EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING); EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); ss_.ProcessMessagesUntilIdle(); // Client still connecting EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING); EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); // Server has pending connection EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); std::unique_ptr accepted = absl::WrapUnique(server->Accept(&accept_addr)); EXPECT_TRUE(nullptr != accepted); EXPECT_NE(accept_addr, kEmptyAddr); EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr); EXPECT_EQ(accepted->GetState(), Socket::CS_CONNECTED); EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress()); EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress()); ss_.ProcessMessagesUntilIdle(); // Client has connected EXPECT_EQ(client->GetState(), Socket::CS_CONNECTED); EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN)); EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress()); } void ConnectToNonListenerTest(const SocketAddress& initial_addr) { StreamSink sink; SocketAddress accept_addr; const SocketAddress nil_addr; const SocketAddress empty_addr = EmptySocketAddressWithFamily(initial_addr.family()); // Create client std::unique_ptr client = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(client.get()); // Create server std::unique_ptr server = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(server.get()); EXPECT_EQ(0, server->Bind(initial_addr)); EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); // Attempt connect to non-listening socket EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); // No pending server connections EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); EXPECT_TRUE(nullptr == server->Accept(&accept_addr)); EXPECT_EQ(accept_addr, nil_addr); // Connection failed EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); EXPECT_EQ(client->GetRemoteAddress(), nil_addr); } void CloseDuringConnectTest(const SocketAddress& initial_addr) { StreamSink sink; SocketAddress accept_addr; const SocketAddress empty_addr = EmptySocketAddressWithFamily(initial_addr.family()); // Create client and server std::unique_ptr client( ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(client.get()); std::unique_ptr server( ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(server.get()); // Initiate connect EXPECT_EQ(0, server->Bind(initial_addr)); EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, server->Listen(5)); EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); // Server close before socket enters accept queue EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); server->Close(); ss_.ProcessMessagesUntilIdle(); // Result: connection failed EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); server.reset(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(server.get()); // Initiate connect EXPECT_EQ(0, server->Bind(initial_addr)); EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, server->Listen(5)); EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); // Server close while socket is in accept queue EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); server->Close(); ss_.ProcessMessagesUntilIdle(); // Result: connection failed EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); // New server server.reset(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(server.get()); // Initiate connect EXPECT_EQ(0, server->Bind(initial_addr)); EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, server->Listen(5)); EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); // Server accepts connection EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); std::unique_ptr accepted(server->Accept(&accept_addr)); ASSERT_TRUE(nullptr != accepted.get()); sink.Monitor(accepted.get()); // Client closes before connection complets EXPECT_EQ(accepted->GetState(), Socket::CS_CONNECTED); // Connected message has not been processed yet. EXPECT_EQ(client->GetState(), Socket::CS_CONNECTING); client->Close(); ss_.ProcessMessagesUntilIdle(); // Result: accepted socket closes EXPECT_EQ(accepted->GetState(), Socket::CS_CLOSED); EXPECT_TRUE(sink.Check(accepted.get(), SSE_CLOSE)); EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); } void CloseTest(const SocketAddress& initial_addr) { StreamSink sink; const SocketAddress kEmptyAddr; // Create clients std::unique_ptr a = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(a.get()); a->Bind(initial_addr); EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); std::unique_ptr b = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(b.get()); b->Bind(initial_addr); EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(a.get(), SSE_OPEN)); EXPECT_EQ(a->GetState(), Socket::CS_CONNECTED); EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress()); EXPECT_TRUE(sink.Check(b.get(), SSE_OPEN)); EXPECT_EQ(b->GetState(), Socket::CS_CONNECTED); EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress()); EXPECT_EQ(1, a->Send("a", 1)); b->Close(); EXPECT_EQ(1, a->Send("b", 1)); ss_.ProcessMessagesUntilIdle(); char buffer[10]; EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr)); EXPECT_TRUE(sink.Check(a.get(), SSE_CLOSE)); EXPECT_EQ(a->GetState(), Socket::CS_CLOSED); EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr); // No signal for Closer EXPECT_FALSE(sink.Check(b.get(), SSE_CLOSE)); EXPECT_EQ(b->GetState(), Socket::CS_CLOSED); EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr); } void TcpSendTest(const SocketAddress& initial_addr) { StreamSink sink; const SocketAddress kEmptyAddr; // Connect two sockets std::unique_ptr a = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(a.get()); a->Bind(initial_addr); EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); std::unique_ptr b = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); sink.Monitor(b.get()); b->Bind(initial_addr); EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); const size_t kBufferSize = 2000; ss_.set_send_buffer_capacity(kBufferSize); ss_.set_recv_buffer_capacity(kBufferSize); const size_t kDataSize = 5000; char send_buffer[kDataSize], recv_buffer[kDataSize]; for (size_t i = 0; i < kDataSize; ++i) send_buffer[i] = static_cast(i % 256); memset(recv_buffer, 0, sizeof(recv_buffer)); size_t send_pos = 0, recv_pos = 0; // Can't send more than send buffer in one write int result = a->Send(send_buffer + send_pos, kDataSize - send_pos); EXPECT_EQ(static_cast(kBufferSize), result); send_pos += result; ss_.ProcessMessagesUntilIdle(); EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE)); EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); // Receive buffer is already filled, fill send buffer again result = a->Send(send_buffer + send_pos, kDataSize - send_pos); EXPECT_EQ(static_cast(kBufferSize), result); send_pos += result; ss_.ProcessMessagesUntilIdle(); EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE)); EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); // No more room in send or receive buffer result = a->Send(send_buffer + send_pos, kDataSize - send_pos); EXPECT_EQ(-1, result); EXPECT_TRUE(a->IsBlocking()); // Read a subset of the data result = b->Recv(recv_buffer + recv_pos, 500, nullptr); EXPECT_EQ(500, result); recv_pos += result; ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(a.get(), SSE_WRITE)); EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); // Room for more on the sending side result = a->Send(send_buffer + send_pos, kDataSize - send_pos); EXPECT_EQ(500, result); send_pos += result; // Empty the recv buffer while (true) { result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); if (result < 0) { EXPECT_EQ(-1, result); EXPECT_TRUE(b->IsBlocking()); break; } recv_pos += result; } ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); // Continue to empty the recv buffer while (true) { result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); if (result < 0) { EXPECT_EQ(-1, result); EXPECT_TRUE(b->IsBlocking()); break; } recv_pos += result; } // Send last of the data result = a->Send(send_buffer + send_pos, kDataSize - send_pos); EXPECT_EQ(500, result); send_pos += result; ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); // Receive the last of the data while (true) { result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); if (result < 0) { EXPECT_EQ(-1, result); EXPECT_TRUE(b->IsBlocking()); break; } recv_pos += result; } ss_.ProcessMessagesUntilIdle(); EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); // The received data matches the sent data EXPECT_EQ(kDataSize, send_pos); EXPECT_EQ(kDataSize, recv_pos); EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize)); } void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) { const SocketAddress kEmptyAddr; // Connect two sockets std::unique_ptr a = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); std::unique_ptr b = absl::WrapUnique(ss_.CreateSocket(initial_addr.family(), SOCK_STREAM)); a->Bind(initial_addr); EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); b->Bind(initial_addr); EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); // First, deliver all packets in 0 ms. char buffer[2] = {0, 0}; const char cNumPackets = 10; for (char i = 0; i < cNumPackets; ++i) { buffer[0] = '0' + i; EXPECT_EQ(1, a->Send(buffer, 1)); } ss_.ProcessMessagesUntilIdle(); for (char i = 0; i < cNumPackets; ++i) { EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr)); EXPECT_EQ(static_cast('0' + i), buffer[0]); } // Next, deliver packets at random intervals const uint32_t mean = 50; const uint32_t stddev = 50; ss_.set_delay_mean(mean); ss_.set_delay_stddev(stddev); ss_.UpdateDelayDistribution(); for (char i = 0; i < cNumPackets; ++i) { buffer[0] = 'A' + i; EXPECT_EQ(1, a->Send(buffer, 1)); } ss_.ProcessMessagesUntilIdle(); for (char i = 0; i < cNumPackets; ++i) { EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr)); EXPECT_EQ(static_cast('A' + i), buffer[0]); } } // It is important that initial_addr's port has to be 0 such that the // incremental port behavior could ensure the 2 Binds result in different // address. void BandwidthTest(const SocketAddress& initial_addr) { Socket* send_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); Socket* recv_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); ASSERT_EQ(0, send_socket->Bind(initial_addr)); ASSERT_EQ(0, recv_socket->Bind(initial_addr)); EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); uint32_t bandwidth = 64 * 1024; ss_.set_bandwidth(bandwidth); Thread* pthMain = Thread::Current(); Sender sender(pthMain, send_socket, 80 * 1024); Receiver receiver(pthMain, recv_socket, bandwidth); // Allow the sender to run for 5 (simulated) seconds, then be stopped for 5 // seconds. SIMULATED_WAIT(false, 5000, fake_clock_); sender.periodic.Stop(); SIMULATED_WAIT(false, 5000, fake_clock_); // Ensure the observed bandwidth fell within a reasonable margin of error. EXPECT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4); EXPECT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s ss_.set_bandwidth(0); } // It is important that initial_addr's port has to be 0 such that the // incremental port behavior could ensure the 2 Binds result in different // address. void DelayTest(const SocketAddress& initial_addr) { time_t seed = ::time(nullptr); RTC_LOG(LS_VERBOSE) << "seed = " << seed; srand(static_cast(seed)); const uint32_t mean = 2000; const uint32_t stddev = 500; ss_.set_delay_mean(mean); ss_.set_delay_stddev(stddev); ss_.UpdateDelayDistribution(); Socket* send_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); Socket* recv_socket = ss_.CreateSocket(initial_addr.family(), SOCK_DGRAM); ASSERT_EQ(0, send_socket->Bind(initial_addr)); ASSERT_EQ(0, recv_socket->Bind(initial_addr)); EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); Thread* pthMain = Thread::Current(); // Avg packet size is 2K, so at 200KB/s for 10s, we should see about // 1000 packets, which is necessary to get a good distribution. Sender sender(pthMain, send_socket, 100 * 2 * 1024); Receiver receiver(pthMain, recv_socket, 0); // Simulate 10 seconds of packets being sent, then check the observed delay // distribution. SIMULATED_WAIT(false, 10000, fake_clock_); sender.periodic.Stop(); receiver.periodic.Stop(); ss_.ProcessMessagesUntilIdle(); const double sample_mean = receiver.sum / receiver.samples; double num = receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum; double den = receiver.samples * (receiver.samples - 1); const double sample_stddev = sqrt(num / den); RTC_LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev; EXPECT_LE(500u, receiver.samples); // We initially used a 0.1 fudge factor, but on the build machine, we // have seen the value differ by as much as 0.13. EXPECT_NEAR(mean, sample_mean, 0.15 * mean); EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev); ss_.set_delay_mean(0); ss_.set_delay_stddev(0); ss_.UpdateDelayDistribution(); } // Test cross-family communication between a client bound to client_addr and a // server bound to server_addr. shouldSucceed indicates if communication is // expected to work or not. void CrossFamilyConnectionTest(const SocketAddress& client_addr, const SocketAddress& server_addr, bool shouldSucceed) { StreamSink sink; SocketAddress accept_address; const SocketAddress kEmptyAddr; // Client gets a IPv4 address std::unique_ptr client = absl::WrapUnique(ss_.CreateSocket(client_addr.family(), SOCK_STREAM)); sink.Monitor(client.get()); EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr); client->Bind(client_addr); // Server gets a non-mapped non-any IPv6 address. // IPv4 sockets should not be able to connect to this. std::unique_ptr server = absl::WrapUnique(ss_.CreateSocket(server_addr.family(), SOCK_STREAM)); sink.Monitor(server.get()); server->Bind(server_addr); server->Listen(5); if (shouldSucceed) { EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); std::unique_ptr accepted = absl::WrapUnique(server->Accept(&accept_address)); EXPECT_TRUE(nullptr != accepted); EXPECT_NE(kEmptyAddr, accept_address); ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN)); EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); } else { // Check that the connection failed. EXPECT_EQ(-1, client->Connect(server->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); EXPECT_TRUE(nullptr == server->Accept(&accept_address)); EXPECT_EQ(accept_address, kEmptyAddr); EXPECT_EQ(client->GetState(), Socket::CS_CLOSED); EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr); } } // Test cross-family datagram sending between a client bound to client_addr // and a server bound to server_addr. shouldSucceed indicates if sending is // expected to succeed or not. void CrossFamilyDatagramTest(const SocketAddress& client_addr, const SocketAddress& server_addr, bool shouldSucceed) { Socket* socket = ss_.CreateSocket(AF_INET, SOCK_DGRAM); socket->Bind(server_addr); SocketAddress bound_server_addr = socket->GetLocalAddress(); auto client1 = std::make_unique( std::make_unique(socket), &fake_clock_); Socket* socket2 = ss_.CreateSocket(AF_INET, SOCK_DGRAM); socket2->Bind(client_addr); auto client2 = std::make_unique( std::make_unique(socket2), &fake_clock_); SocketAddress client2_addr; if (shouldSucceed) { EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr)); EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); SocketAddress client1_addr; EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); EXPECT_EQ(client1_addr, bound_server_addr); } else { EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr)); EXPECT_TRUE(client1->CheckNoPacket()); } } protected: rtc::ScopedFakeClock fake_clock_; VirtualSocketServer ss_; AutoSocketServerThread thread_; const SocketAddress kIPv4AnyAddress; const SocketAddress kIPv6AnyAddress; }; TEST_F(VirtualSocketServerTest, basic_v4) { SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000); BasicTest(ipv4_test_addr); } TEST_F(VirtualSocketServerTest, basic_v6) { SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000); BasicTest(ipv6_test_addr); } TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) { IPAddress ipv4_default_addr(0x01020304); TestDefaultSourceAddress(ipv4_default_addr); } TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) { IPAddress ipv6_default_addr; EXPECT_TRUE( IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr)); TestDefaultSourceAddress(ipv6_default_addr); } TEST_F(VirtualSocketServerTest, connect_v4) { ConnectTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, connect_v6) { ConnectTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) { ConnectToNonListenerTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) { ConnectToNonListenerTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, close_during_connect_v4) { CloseDuringConnectTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, close_during_connect_v6) { CloseDuringConnectTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, close_v4) { CloseTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, close_v6) { CloseTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, tcp_send_v4) { TcpSendTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, tcp_send_v6) { TcpSendTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) { TcpSendsPacketsInOrderTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) { TcpSendsPacketsInOrderTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, bandwidth_v4) { BandwidthTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, bandwidth_v6) { BandwidthTest(kIPv6AnyAddress); } TEST_F(VirtualSocketServerTest, delay_v4) { DelayTest(kIPv4AnyAddress); } TEST_F(VirtualSocketServerTest, delay_v6) { DelayTest(kIPv6AnyAddress); } // Works, receiving socket sees 127.0.0.2. TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) { CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0), SocketAddress("0.0.0.0", 5000), true); } // Fails. TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) { CrossFamilyConnectionTest(SocketAddress("::2", 0), SocketAddress("0.0.0.0", 5000), false); } // Fails. TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) { CrossFamilyConnectionTest(SocketAddress("::2", 0), SocketAddress("::ffff:127.0.0.1", 5000), false); } // Works. receiving socket sees ::ffff:127.0.0.2. TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) { CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), SocketAddress("::", 5000), true); } // Fails. TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) { CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), SocketAddress("::1", 5000), false); } // Works. Receiving socket sees ::ffff:127.0.0.1. TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) { CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0), SocketAddress("::ffff:127.0.0.2", 5000), true); } // Works, receiving socket sees a result from GetNextIP. TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) { CrossFamilyConnectionTest(SocketAddress("::", 0), SocketAddress("0.0.0.0", 5000), true); } // Works, receiving socket sees whatever GetNextIP gave the client. TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) { CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0), SocketAddress("::", 5000), true); } TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) { CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0), SocketAddress("::", 5000), true); } TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) { CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0), SocketAddress("0.0.0.0", 5000), true); } TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) { CrossFamilyDatagramTest(SocketAddress("::2", 0), SocketAddress("0.0.0.0", 5000), false); } TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) { CrossFamilyDatagramTest(SocketAddress("::2", 0), SocketAddress("::ffff:127.0.0.1", 5000), false); } TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) { CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), SocketAddress("::", 5000), true); } TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) { CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), SocketAddress("::1", 5000), false); } TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) { CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0), SocketAddress("::ffff:127.0.0.2", 5000), true); } TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) { CrossFamilyDatagramTest(SocketAddress("::", 0), SocketAddress("0.0.0.0", 5000), true); } TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) { Socket* socket1 = ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_DGRAM); std::unique_ptr socket2 = absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_DGRAM)); socket1->Bind(kIPv4AnyAddress); socket2->Bind(kIPv4AnyAddress); auto client1 = std::make_unique( std::make_unique(socket1), &fake_clock_); ss_.SetSendingBlocked(true); EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress())); EXPECT_TRUE(socket1->IsBlocking()); EXPECT_EQ(0, client1->ready_to_send_count()); ss_.SetSendingBlocked(false); EXPECT_EQ(1, client1->ready_to_send_count()); EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress())); } TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) { constexpr size_t kBufferSize = 1024; ss_.set_send_buffer_capacity(kBufferSize); ss_.set_recv_buffer_capacity(kBufferSize); StreamSink sink; std::unique_ptr socket1 = absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_STREAM)); std::unique_ptr socket2 = absl::WrapUnique(ss_.CreateSocket(kIPv4AnyAddress.family(), SOCK_STREAM)); sink.Monitor(socket1.get()); sink.Monitor(socket2.get()); socket1->Bind(kIPv4AnyAddress); socket2->Bind(kIPv4AnyAddress); // Connect sockets. EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress())); EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress())); ss_.ProcessMessagesUntilIdle(); char data[kBufferSize] = {}; // First Send call will fill the send buffer but not send anything. ss_.SetSendingBlocked(true); EXPECT_EQ(static_cast(kBufferSize), socket1->Send(data, kBufferSize)); ss_.ProcessMessagesUntilIdle(); EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE)); EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ)); EXPECT_FALSE(socket1->IsBlocking()); // Since the send buffer is full, next Send will result in EWOULDBLOCK. EXPECT_EQ(-1, socket1->Send(data, kBufferSize)); EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE)); EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ)); EXPECT_TRUE(socket1->IsBlocking()); // When sending is unblocked, the buffered data should be sent and // SignalWriteEvent should fire. ss_.SetSendingBlocked(false); ss_.ProcessMessagesUntilIdle(); EXPECT_TRUE(sink.Check(socket1.get(), SSE_WRITE)); EXPECT_TRUE(sink.Check(socket2.get(), SSE_READ)); } TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) { const uint32_t kTestMean[] = {10, 100, 333, 1000}; const double kTestDev[] = {0.25, 0.1, 0.01}; // TODO(deadbeef): The current code only works for 1000 data points or more. const uint32_t kTestSamples[] = {/*10, 100,*/ 1000}; for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) { for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) { for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) { ASSERT_LT(0u, kTestSamples[sidx]); const uint32_t kStdDev = static_cast(kTestDev[didx] * kTestMean[midx]); std::unique_ptr f = VirtualSocketServer::CreateDistribution(kTestMean[midx], kStdDev, kTestSamples[sidx]); ASSERT_TRUE(nullptr != f.get()); ASSERT_EQ(kTestSamples[sidx], f->size()); double sum = 0; for (uint32_t i = 0; i < f->size(); ++i) { sum += (*f)[i].second; } const double mean = sum / f->size(); double sum_sq_dev = 0; for (uint32_t i = 0; i < f->size(); ++i) { double dev = (*f)[i].second - mean; sum_sq_dev += dev * dev; } const double stddev = sqrt(sum_sq_dev / f->size()); EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx]) << "M=" << kTestMean[midx] << " SD=" << kStdDev << " N=" << kTestSamples[sidx]; EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev) << "M=" << kTestMean[midx] << " SD=" << kStdDev << " N=" << kTestSamples[sidx]; } } } } } // namespace } // namespace rtc