/* * Copyright (c) 2020 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef RTC_TOOLS_RTC_EVENT_LOG_VISUALIZER_ANALYZER_COMMON_H_ #define RTC_TOOLS_RTC_EVENT_LOG_VISUALIZER_ANALYZER_COMMON_H_ #include #include #include "absl/types/optional.h" #include "api/function_view.h" #include "logging/rtc_event_log/rtc_event_log_parser.h" #include "rtc_tools/rtc_event_log_visualizer/plot_base.h" namespace webrtc { constexpr int kNumMicrosecsPerSec = 1000000; constexpr int kNumMillisecsPerSec = 1000; constexpr float kLeftMargin = 0.01f; constexpr float kRightMargin = 0.02f; constexpr float kBottomMargin = 0.02f; constexpr float kTopMargin = 0.05f; class AnalyzerConfig { public: float GetCallTimeSec(Timestamp timestamp) const { Timestamp offset = normalize_time_ ? begin_time_ : Timestamp::Zero(); return static_cast((timestamp - offset).us()) / 1000000; } float GetCallTimeSecFromMs(int64_t timestamp_ms) const { return GetCallTimeSec(Timestamp::Millis(timestamp_ms)); } float CallBeginTimeSec() const { return GetCallTimeSec(begin_time_); } float CallEndTimeSec() const { return GetCallTimeSec(end_time_); } int64_t CallTimeToUtcOffsetMs() { if (normalize_time_) { Timestamp utc_begin_time_ = begin_time_ + rtc_to_utc_offset_; return utc_begin_time_.ms(); } return rtc_to_utc_offset_.ms(); } // Window and step size used for calculating moving averages, e.g. bitrate. // The generated data points will be `step_.ms()` milliseconds apart. // Only events occurring at most `window_duration_.ms()` milliseconds before // the current data point will be part of the average. TimeDelta window_duration_ = TimeDelta::Millis(250); TimeDelta step_ = TimeDelta::Millis(10); // First and last events of the log. Timestamp begin_time_ = Timestamp::MinusInfinity(); Timestamp end_time_ = Timestamp::MinusInfinity(); TimeDelta rtc_to_utc_offset_ = TimeDelta::Zero(); bool normalize_time_; }; struct LayerDescription { LayerDescription(uint32_t ssrc, uint8_t spatial_layer, uint8_t temporal_layer) : ssrc(ssrc), spatial_layer(spatial_layer), temporal_layer(temporal_layer) {} bool operator<(const LayerDescription& other) const { if (ssrc != other.ssrc) return ssrc < other.ssrc; if (spatial_layer != other.spatial_layer) return spatial_layer < other.spatial_layer; return temporal_layer < other.temporal_layer; } uint32_t ssrc; uint8_t spatial_layer; uint8_t temporal_layer; }; bool IsRtxSsrc(const ParsedRtcEventLog& parsed_log, PacketDirection direction, uint32_t ssrc); bool IsVideoSsrc(const ParsedRtcEventLog& parsed_log, PacketDirection direction, uint32_t ssrc); bool IsAudioSsrc(const ParsedRtcEventLog& parsed_log, PacketDirection direction, uint32_t ssrc); std::string GetStreamName(const ParsedRtcEventLog& parsed_log, PacketDirection direction, uint32_t ssrc); std::string GetLayerName(LayerDescription layer); // For each element in data_view, use `f()` to extract a y-coordinate and // store the result in a TimeSeries. template void ProcessPoints(rtc::FunctionView fx, rtc::FunctionView(const DataType&)> fy, const IterableType& data_view, TimeSeries* result) { for (size_t i = 0; i < data_view.size(); i++) { const DataType& elem = data_view[i]; float x = fx(elem); absl::optional y = fy(elem); if (y) result->points.emplace_back(x, *y); } } // For each pair of adjacent elements in `data`, use `f()` to extract a // y-coordinate and store the result in a TimeSeries. Note that the x-coordinate // will be the time of the second element in the pair. template void ProcessPairs( rtc::FunctionView fx, rtc::FunctionView(const DataType&, const DataType&)> fy, const IterableType& data, TimeSeries* result) { for (size_t i = 1; i < data.size(); i++) { float x = fx(data[i]); absl::optional y = fy(data[i - 1], data[i]); if (y) result->points.emplace_back(x, static_cast(*y)); } } // For each pair of adjacent elements in `data`, use `f()` to extract a // y-coordinate and store the result in a TimeSeries. Note that the x-coordinate // will be the time of the second element in the pair. template void AccumulatePairs( rtc::FunctionView fx, rtc::FunctionView(const DataType&, const DataType&)> fy, const IterableType& data, TimeSeries* result) { ResultType sum = 0; for (size_t i = 1; i < data.size(); i++) { float x = fx(data[i]); absl::optional y = fy(data[i - 1], data[i]); if (y) { sum += *y; result->points.emplace_back(x, static_cast(sum)); } } } // Calculates a moving average of `data` and stores the result in a TimeSeries. // A data point is generated every `step` microseconds from `begin_time` // to `end_time`. The value of each data point is the average of the data // during the preceding `window_duration_us` microseconds. template void MovingAverage( rtc::FunctionView(const DataType&)> fy, const IterableType& data_view, AnalyzerConfig config, TimeSeries* result) { size_t window_index_begin = 0; size_t window_index_end = 0; ResultType sum_in_window = 0; for (Timestamp t = config.begin_time_; t < config.end_time_ + config.step_; t += config.step_) { while (window_index_end < data_view.size() && data_view[window_index_end].log_time() < t) { absl::optional value = fy(data_view[window_index_end]); if (value) sum_in_window += *value; ++window_index_end; } while (window_index_begin < data_view.size() && data_view[window_index_begin].log_time() < t - config.window_duration_) { absl::optional value = fy(data_view[window_index_begin]); if (value) sum_in_window -= *value; ++window_index_begin; } float window_duration_s = static_cast(config.window_duration_.us()) / kNumMicrosecsPerSec; float x = config.GetCallTimeSec(t); float y = sum_in_window / window_duration_s; result->points.emplace_back(x, y); } } } // namespace webrtc #endif // RTC_TOOLS_RTC_EVENT_LOG_VISUALIZER_ANALYZER_COMMON_H_