/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_tools/rtc_event_log_visualizer/plot_base.h" #include #include #include "rtc_base/checks.h" namespace webrtc { void Plot::SetXAxis(float min_value, float max_value, std::string label, float left_margin, float right_margin) { RTC_DCHECK_LE(min_value, max_value); xaxis_min_ = min_value - left_margin * (max_value - min_value); xaxis_max_ = max_value + right_margin * (max_value - min_value); xaxis_label_ = label; } void Plot::SetSuggestedXAxis(float min_value, float max_value, std::string label, float left_margin, float right_margin) { for (const auto& series : series_list_) { for (const auto& point : series.points) { min_value = std::min(min_value, point.x); max_value = std::max(max_value, point.x); } } SetXAxis(min_value, max_value, label, left_margin, right_margin); } void Plot::SetYAxis(float min_value, float max_value, std::string label, float bottom_margin, float top_margin) { RTC_DCHECK_LE(min_value, max_value); yaxis_min_ = min_value - bottom_margin * (max_value - min_value); yaxis_max_ = max_value + top_margin * (max_value - min_value); yaxis_label_ = label; } void Plot::SetSuggestedYAxis(float min_value, float max_value, std::string label, float bottom_margin, float top_margin) { for (const auto& series : series_list_) { for (const auto& point : series.points) { min_value = std::min(min_value, point.y); max_value = std::max(max_value, point.y); } } SetYAxis(min_value, max_value, label, bottom_margin, top_margin); } void Plot::SetYAxisTickLabels( const std::vector>& labels) { yaxis_tick_labels_ = labels; } void Plot::SetTitle(const std::string& title) { title_ = title; } void Plot::SetId(const std::string& id) { id_ = id; } void Plot::AppendTimeSeries(TimeSeries&& time_series) { series_list_.emplace_back(std::move(time_series)); } void Plot::AppendIntervalSeries(IntervalSeries&& interval_series) { interval_list_.emplace_back(std::move(interval_series)); } void Plot::AppendTimeSeriesIfNotEmpty(TimeSeries&& time_series) { if (!time_series.points.empty()) { series_list_.emplace_back(std::move(time_series)); } } void Plot::PrintPythonCode() const { // Write python commands to stdout. Intended program usage is // ./event_log_visualizer event_log160330.dump | python if (!series_list_.empty()) { printf("color_count = %zu\n", series_list_.size()); printf( "hls_colors = [(i*1.0/color_count, 0.25+i*0.5/color_count, 0.8) for i " "in range(color_count)]\n"); printf("colors = [colorsys.hls_to_rgb(*hls) for hls in hls_colors]\n"); for (size_t i = 0; i < series_list_.size(); i++) { printf("\n# === Series: %s ===\n", series_list_[i].label.c_str()); // List x coordinates printf("x%zu = [", i); if (!series_list_[i].points.empty()) printf("%.3f", series_list_[i].points[0].x); for (size_t j = 1; j < series_list_[i].points.size(); j++) printf(", %.3f", series_list_[i].points[j].x); printf("]\n"); // List y coordinates printf("y%zu = [", i); if (!series_list_[i].points.empty()) printf("%G", series_list_[i].points[0].y); for (size_t j = 1; j < series_list_[i].points.size(); j++) printf(", %G", series_list_[i].points[j].y); printf("]\n"); if (series_list_[i].line_style == LineStyle::kBar) { // There is a plt.bar function that draws bar plots, // but it is *way* too slow to be useful. printf( "plt.vlines(x%zu, [min(t,0) for t in y%zu], [max(t,0) for t in " "y%zu], color=colors[%zu], label=\'%s\')\n", i, i, i, i, series_list_[i].label.c_str()); if (series_list_[i].point_style == PointStyle::kHighlight) { printf( "plt.plot(x%zu, y%zu, color=colors[%zu], " "marker='.', ls=' ')\n", i, i, i); } } else if (series_list_[i].line_style == LineStyle::kLine) { if (series_list_[i].point_style == PointStyle::kHighlight) { printf( "plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\', " "marker='.')\n", i, i, i, series_list_[i].label.c_str()); } else { printf("plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\')\n", i, i, i, series_list_[i].label.c_str()); } } else if (series_list_[i].line_style == LineStyle::kStep) { // Draw lines from (x[0],y[0]) to (x[1],y[0]) to (x[1],y[1]) and so on // to illustrate the "steps". This can be expressed by duplicating all // elements except the first in x and the last in y. printf("xd%zu = [dup for v in x%zu for dup in [v, v]]\n", i, i); printf("yd%zu = [dup for v in y%zu for dup in [v, v]]\n", i, i); printf( "plt.plot(xd%zu[1:], yd%zu[:-1], color=colors[%zu], " "label=\'%s\')\n", i, i, i, series_list_[i].label.c_str()); if (series_list_[i].point_style == PointStyle::kHighlight) { printf( "plt.plot(x%zu, y%zu, color=colors[%zu], " "marker='.', ls=' ')\n", i, i, i); } } else if (series_list_[i].line_style == LineStyle::kNone) { printf( "plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\', " "marker='o', ls=' ')\n", i, i, i, series_list_[i].label.c_str()); } else { printf("raise Exception(\"Unknown graph type\")\n"); } } // IntervalSeries printf("interval_colors = ['#ff8e82','#5092fc','#c4ffc4','#aaaaaa']\n"); RTC_CHECK_LE(interval_list_.size(), 4); // To get the intervals to show up in the legend we have to create patches // for them. printf("legend_patches = []\n"); for (size_t i = 0; i < interval_list_.size(); i++) { // List intervals printf("\n# === IntervalSeries: %s ===\n", interval_list_[i].label.c_str()); printf("ival%zu = [", i); if (!interval_list_[i].intervals.empty()) { printf("(%G, %G)", interval_list_[i].intervals[0].begin, interval_list_[i].intervals[0].end); } for (size_t j = 1; j < interval_list_[i].intervals.size(); j++) { printf(", (%G, %G)", interval_list_[i].intervals[j].begin, interval_list_[i].intervals[j].end); } printf("]\n"); printf("for i in range(0, %zu):\n", interval_list_[i].intervals.size()); if (interval_list_[i].orientation == IntervalSeries::kVertical) { printf( " plt.axhspan(ival%zu[i][0], ival%zu[i][1], " "facecolor=interval_colors[%zu], " "alpha=0.3)\n", i, i, i); } else { printf( " plt.axvspan(ival%zu[i][0], ival%zu[i][1], " "facecolor=interval_colors[%zu], " "alpha=0.3)\n", i, i, i); } printf( "legend_patches.append(mpatches.Patch(ec=\'black\', " "fc=interval_colors[%zu], label='%s'))\n", i, interval_list_[i].label.c_str()); } } printf("plt.xlim(%f, %f)\n", xaxis_min_, xaxis_max_); printf("plt.ylim(%f, %f)\n", yaxis_min_, yaxis_max_); printf("plt.xlabel(\'%s\')\n", xaxis_label_.c_str()); printf("plt.ylabel(\'%s\')\n", yaxis_label_.c_str()); printf("plt.title(\'%s\')\n", title_.c_str()); printf("fig = plt.gcf()\n"); printf("fig.canvas.manager.set_window_title(\'%s\')\n", id_.c_str()); if (!yaxis_tick_labels_.empty()) { printf("yaxis_tick_labels = ["); for (const auto& kv : yaxis_tick_labels_) { printf("(%f,\"%s\"),", kv.first, kv.second.c_str()); } printf("]\n"); printf("yaxis_tick_labels = list(zip(*yaxis_tick_labels))\n"); printf("plt.yticks(*yaxis_tick_labels)\n"); } if (!series_list_.empty() || !interval_list_.empty()) { printf("handles, labels = plt.gca().get_legend_handles_labels()\n"); printf("for lp in legend_patches:\n"); printf(" handles.append(lp)\n"); printf(" labels.append(lp.get_label())\n"); printf("plt.legend(handles, labels, loc=\'best\', fontsize=\'small\')\n"); } } void Plot::ExportProtobuf(webrtc::analytics::Chart* chart) const { for (size_t i = 0; i < series_list_.size(); i++) { webrtc::analytics::DataSet* data_set = chart->add_data_sets(); for (const auto& point : series_list_[i].points) { data_set->add_x_values(point.x); } for (const auto& point : series_list_[i].points) { data_set->add_y_values(point.y); } if (series_list_[i].line_style == LineStyle::kBar) { data_set->set_style(webrtc::analytics::ChartStyle::BAR_CHART); } else if (series_list_[i].line_style == LineStyle::kLine) { data_set->set_style(webrtc::analytics::ChartStyle::LINE_CHART); } else if (series_list_[i].line_style == LineStyle::kStep) { data_set->set_style(webrtc::analytics::ChartStyle::LINE_STEP_CHART); } else if (series_list_[i].line_style == LineStyle::kNone) { data_set->set_style(webrtc::analytics::ChartStyle::SCATTER_CHART); } else { data_set->set_style(webrtc::analytics::ChartStyle::UNDEFINED); } if (series_list_[i].point_style == PointStyle::kHighlight) data_set->set_highlight_points(true); data_set->set_label(series_list_[i].label); } chart->set_xaxis_min(xaxis_min_); chart->set_xaxis_max(xaxis_max_); chart->set_yaxis_min(yaxis_min_); chart->set_yaxis_max(yaxis_max_); chart->set_xaxis_label(xaxis_label_); chart->set_yaxis_label(yaxis_label_); chart->set_title(title_); chart->set_id(id_); for (const auto& kv : yaxis_tick_labels_) { webrtc::analytics::TickLabel* tick = chart->add_yaxis_tick_labels(); tick->set_value(kv.first); tick->set_label(kv.second); } } void PlotCollection::PrintPythonCode(bool shared_xaxis) const { printf("import matplotlib.pyplot as plt\n"); printf("plt.rcParams.update({'figure.max_open_warning': 0})\n"); printf("import matplotlib.patches as mpatches\n"); printf("import matplotlib.patheffects as pe\n"); printf("import colorsys\n"); for (size_t i = 0; i < plots_.size(); i++) { printf("plt.figure(%zu)\n", i); if (shared_xaxis) { // Link x-axes across all figures for synchronized zooming. if (i == 0) { printf("axis0 = plt.subplot(111)\n"); } else { printf("plt.subplot(111, sharex=axis0)\n"); } } plots_[i]->PrintPythonCode(); } printf("plt.show()\n"); } void PlotCollection::ExportProtobuf( webrtc::analytics::ChartCollection* collection) const { for (const auto& plot : plots_) { webrtc::analytics::Chart* protobuf_representation = collection->add_charts(); plot->ExportProtobuf(protobuf_representation); } if (calltime_to_utc_ms_) { collection->set_calltime_to_utc_ms(*calltime_to_utc_ms_); } } Plot* PlotCollection::AppendNewPlot() { plots_.push_back(std::make_unique()); return plots_.back().get(); } } // namespace webrtc