/* * Copyright 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "test/time_controller/simulated_time_controller.h" #include #include #include "rtc_base/event.h" #include "rtc_base/task_queue.h" #include "rtc_base/task_queue_for_test.h" #include "rtc_base/task_utils/repeating_task.h" #include "test/gmock.h" #include "test/gtest.h" // NOTE: Since these tests rely on real time behavior, they will be flaky // if run on heavily loaded systems. namespace webrtc { namespace { using ::testing::AtLeast; using ::testing::Invoke; using ::testing::MockFunction; using ::testing::NiceMock; using ::testing::Return; constexpr Timestamp kStartTime = Timestamp::Seconds(1000); } // namespace TEST(SimulatedTimeControllerTest, TaskIsStoppedOnStop) { const TimeDelta kShortInterval = TimeDelta::Millis(5); const TimeDelta kLongInterval = TimeDelta::Millis(20); const int kShortIntervalCount = 4; const int kMargin = 1; GlobalSimulatedTimeController time_simulation(kStartTime); rtc::TaskQueue task_queue( time_simulation.GetTaskQueueFactory()->CreateTaskQueue( "TestQueue", TaskQueueFactory::Priority::NORMAL)); std::atomic_int counter(0); auto handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] { if (++counter >= kShortIntervalCount) return kLongInterval; return kShortInterval; }); // Sleep long enough to go through the initial phase. time_simulation.AdvanceTime(kShortInterval * (kShortIntervalCount + kMargin)); EXPECT_EQ(counter.load(), kShortIntervalCount); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); // Sleep long enough that the task would run at least once more if not // stopped. time_simulation.AdvanceTime(kLongInterval * 2); EXPECT_EQ(counter.load(), kShortIntervalCount); } TEST(SimulatedTimeControllerTest, TaskCanStopItself) { std::atomic_int counter(0); GlobalSimulatedTimeController time_simulation(kStartTime); rtc::TaskQueue task_queue( time_simulation.GetTaskQueueFactory()->CreateTaskQueue( "TestQueue", TaskQueueFactory::Priority::NORMAL)); RepeatingTaskHandle handle; task_queue.PostTask([&] { handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] { ++counter; handle.Stop(); return TimeDelta::Millis(2); }); }); time_simulation.AdvanceTime(TimeDelta::Millis(10)); EXPECT_EQ(counter.load(), 1); } TEST(SimulatedTimeControllerTest, Example) { class ObjectOnTaskQueue { public: void DoPeriodicTask() {} TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); } void StartPeriodicTask(RepeatingTaskHandle* handle, rtc::TaskQueue* task_queue) { *handle = RepeatingTaskHandle::Start(task_queue->Get(), [this] { DoPeriodicTask(); return TimeUntilNextRun(); }); } }; GlobalSimulatedTimeController time_simulation(kStartTime); rtc::TaskQueue task_queue( time_simulation.GetTaskQueueFactory()->CreateTaskQueue( "TestQueue", TaskQueueFactory::Priority::NORMAL)); auto object = std::make_unique(); // Create and start the periodic task. RepeatingTaskHandle handle; object->StartPeriodicTask(&handle, &task_queue); // Restart the task task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); object->StartPeriodicTask(&handle, &task_queue); task_queue.PostTask( [handle = std::move(handle)]() mutable { handle.Stop(); }); task_queue.PostTask([object = std::move(object)] {}); } TEST(SimulatedTimeControllerTest, DelayTaskRunOnTime) { GlobalSimulatedTimeController time_simulation(kStartTime); std::unique_ptr task_queue = time_simulation.GetTaskQueueFactory()->CreateTaskQueue( "TestQueue", TaskQueueFactory::Priority::NORMAL); bool delay_task_executed = false; task_queue->PostDelayedTask([&] { delay_task_executed = true; }, TimeDelta::Millis(10)); time_simulation.AdvanceTime(TimeDelta::Millis(10)); EXPECT_TRUE(delay_task_executed); } TEST(SimulatedTimeControllerTest, ThreadYeildsOnSynchronousCall) { GlobalSimulatedTimeController sim(kStartTime); auto main_thread = sim.GetMainThread(); auto t2 = sim.CreateThread("thread", nullptr); bool task_has_run = false; // Posting a task to the main thread, this should not run until AdvanceTime is // called. main_thread->PostTask([&] { task_has_run = true; }); SendTask(t2.get(), [] { rtc::Event yield_event; // Wait() triggers YieldExecution() which will runs message processing on // all threads that are not in the yielded set. yield_event.Wait(TimeDelta::Zero()); }); // Since we are doing an invoke from the main thread, we don't expect the main // thread message loop to be processed. EXPECT_FALSE(task_has_run); sim.AdvanceTime(TimeDelta::Seconds(1)); ASSERT_TRUE(task_has_run); } } // namespace webrtc