/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "api/test/simulated_network.h" #include "api/test/video/function_video_encoder_factory.h" #include "call/fake_network_pipe.h" #include "call/simulated_network.h" #include "media/engine/internal_encoder_factory.h" #include "media/engine/simulcast_encoder_adapter.h" #include "modules/rtp_rtcp/source/create_video_rtp_depacketizer.h" #include "modules/rtp_rtcp/source/rtp_packet.h" #include "modules/video_coding/codecs/vp8/include/vp8.h" #include "modules/video_coding/codecs/vp9/include/vp9.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/numerics/sequence_number_util.h" #include "rtc_base/synchronization/mutex.h" #include "rtc_base/task_queue_for_test.h" #include "test/call_test.h" namespace webrtc { namespace { const int kFrameMaxWidth = 1280; const int kFrameMaxHeight = 720; const int kFrameRate = 30; const int kMaxSecondsLost = 5; const int kMaxFramesLost = kFrameRate * kMaxSecondsLost; const int kMinPacketsToObserve = 10; const int kEncoderBitrateBps = 300000; const uint32_t kPictureIdWraparound = (1 << 15); const size_t kNumTemporalLayers[] = {1, 2, 3}; } // namespace class PictureIdObserver : public test::RtpRtcpObserver { public: explicit PictureIdObserver(VideoCodecType codec_type) : test::RtpRtcpObserver(test::CallTest::kDefaultTimeout), depacketizer_(CreateVideoRtpDepacketizer(codec_type)), max_expected_picture_id_gap_(0), max_expected_tl0_idx_gap_(0), num_ssrcs_to_observe_(1) {} void SetExpectedSsrcs(size_t num_expected_ssrcs) { MutexLock lock(&mutex_); num_ssrcs_to_observe_ = num_expected_ssrcs; } void ResetObservedSsrcs() { MutexLock lock(&mutex_); // Do not clear the timestamp and picture_id, to ensure that we check // consistency between reinits and recreations. num_packets_sent_.clear(); observed_ssrcs_.clear(); } void SetMaxExpectedPictureIdGap(int max_expected_picture_id_gap) { MutexLock lock(&mutex_); max_expected_picture_id_gap_ = max_expected_picture_id_gap; // Expect smaller gap for `tl0_pic_idx` (running index for temporal_idx 0). max_expected_tl0_idx_gap_ = max_expected_picture_id_gap_ / 2; } private: struct ParsedPacket { uint32_t timestamp; uint32_t ssrc; int16_t picture_id; int16_t tl0_pic_idx; uint8_t temporal_idx; VideoFrameType frame_type; }; bool ParsePayload(const uint8_t* packet, size_t length, ParsedPacket* parsed) const { RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); EXPECT_TRUE(rtp_packet.Ssrc() == test::CallTest::kVideoSendSsrcs[0] || rtp_packet.Ssrc() == test::CallTest::kVideoSendSsrcs[1] || rtp_packet.Ssrc() == test::CallTest::kVideoSendSsrcs[2]) << "Unknown SSRC sent."; if (rtp_packet.payload_size() == 0) { return false; // Padding packet. } parsed->timestamp = rtp_packet.Timestamp(); parsed->ssrc = rtp_packet.Ssrc(); absl::optional parsed_payload = depacketizer_->Parse(rtp_packet.PayloadBuffer()); EXPECT_TRUE(parsed_payload); if (const auto* vp8_header = absl::get_if( &parsed_payload->video_header.video_type_header)) { parsed->picture_id = vp8_header->pictureId; parsed->tl0_pic_idx = vp8_header->tl0PicIdx; parsed->temporal_idx = vp8_header->temporalIdx; } else if (const auto* vp9_header = absl::get_if( &parsed_payload->video_header.video_type_header)) { parsed->picture_id = vp9_header->picture_id; parsed->tl0_pic_idx = vp9_header->tl0_pic_idx; parsed->temporal_idx = vp9_header->temporal_idx; } else { RTC_DCHECK_NOTREACHED(); } parsed->frame_type = parsed_payload->video_header.frame_type; return true; } // Verify continuity and monotonicity of picture_id sequence. void VerifyPictureId(const ParsedPacket& current, const ParsedPacket& last) const RTC_EXCLUSIVE_LOCKS_REQUIRED(&mutex_) { if (current.timestamp == last.timestamp) { EXPECT_EQ(last.picture_id, current.picture_id); return; // Same frame. } // Packet belongs to a new frame. // Picture id should be increasing. EXPECT_TRUE((AheadOf(current.picture_id, last.picture_id))); // Expect continuously increasing picture id. int diff = ForwardDiff(last.picture_id, current.picture_id); EXPECT_LE(diff - 1, max_expected_picture_id_gap_); if (diff > 2) { // If the VideoSendStream is destroyed, any frames still in queue is lost. // This can result in a two-frame gap, which will result in logs like // "packet transmission failed, no matching RTP module found, or // transmission error". // A larger gap is only possible for first frame after a recreation, i.e. // key frames. EXPECT_EQ(VideoFrameType::kVideoFrameKey, current.frame_type); } } void VerifyTl0Idx(const ParsedPacket& current, const ParsedPacket& last) const RTC_EXCLUSIVE_LOCKS_REQUIRED(&mutex_) { if (current.tl0_pic_idx == kNoTl0PicIdx || current.temporal_idx == kNoTemporalIdx) { return; // No temporal layers. } if (current.timestamp == last.timestamp || current.temporal_idx != 0) { EXPECT_EQ(last.tl0_pic_idx, current.tl0_pic_idx); return; } // New frame with `temporal_idx` 0. // `tl0_pic_idx` should be increasing. EXPECT_TRUE(AheadOf(current.tl0_pic_idx, last.tl0_pic_idx)); // Expect continuously increasing idx. int diff = ForwardDiff(last.tl0_pic_idx, current.tl0_pic_idx); if (diff > 1) { // If the VideoSendStream is destroyed, any frames still in queue is lost. // Gaps only possible for first frame after a recreation, i.e. key frames. EXPECT_EQ(VideoFrameType::kVideoFrameKey, current.frame_type); EXPECT_LE(diff - 1, max_expected_tl0_idx_gap_); } } Action OnSendRtp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); ParsedPacket parsed; if (!ParsePayload(packet, length, &parsed)) return SEND_PACKET; uint32_t ssrc = parsed.ssrc; if (last_observed_packet_.find(ssrc) != last_observed_packet_.end()) { // Compare to last packet. VerifyPictureId(parsed, last_observed_packet_[ssrc]); VerifyTl0Idx(parsed, last_observed_packet_[ssrc]); } last_observed_packet_[ssrc] = parsed; // Pass the test when enough media packets have been received on all // streams. if (++num_packets_sent_[ssrc] >= kMinPacketsToObserve && observed_ssrcs_.find(ssrc) == observed_ssrcs_.end()) { observed_ssrcs_.insert(ssrc); if (observed_ssrcs_.size() == num_ssrcs_to_observe_) { observation_complete_.Set(); } } return SEND_PACKET; } Mutex mutex_; const std::unique_ptr depacketizer_; std::map last_observed_packet_ RTC_GUARDED_BY(mutex_); std::map num_packets_sent_ RTC_GUARDED_BY(mutex_); int max_expected_picture_id_gap_ RTC_GUARDED_BY(mutex_); int max_expected_tl0_idx_gap_ RTC_GUARDED_BY(mutex_); size_t num_ssrcs_to_observe_ RTC_GUARDED_BY(mutex_); std::set observed_ssrcs_ RTC_GUARDED_BY(mutex_); }; class PictureIdTest : public test::CallTest, public ::testing::WithParamInterface { public: PictureIdTest() : num_temporal_layers_(GetParam()) {} virtual ~PictureIdTest() { SendTask(task_queue(), [this]() { send_transport_.reset(); receive_transport_.reset(); DestroyCalls(); }); } void SetupEncoder(VideoEncoderFactory* encoder_factory, const std::string& payload_name); void SetVideoEncoderConfig(int num_streams); void TestPictureIdContinuousAfterReconfigure( const std::vector& ssrc_counts); void TestPictureIdIncreaseAfterRecreateStreams( const std::vector& ssrc_counts); private: const size_t num_temporal_layers_; std::unique_ptr observer_; }; // TODO(bugs.webrtc.org/13725): Enable on android when flakiness fixed. #if defined(WEBRTC_ANDROID) #define MAYBE_TemporalLayers DISABLED_TemporalLayers #else #define MAYBE_TemporalLayers TemporalLayers #endif INSTANTIATE_TEST_SUITE_P(MAYBE_TemporalLayers, PictureIdTest, ::testing::ValuesIn(kNumTemporalLayers)); void PictureIdTest::SetupEncoder(VideoEncoderFactory* encoder_factory, const std::string& payload_name) { observer_.reset( new PictureIdObserver(PayloadStringToCodecType(payload_name))); SendTask( task_queue(), [this, encoder_factory, payload_name]() { CreateCalls(); CreateSendTransport(BuiltInNetworkBehaviorConfig(), observer_.get()); CreateSendConfig(kNumSimulcastStreams, 0, 0, send_transport_.get()); GetVideoSendConfig()->encoder_settings.encoder_factory = encoder_factory; GetVideoSendConfig()->rtp.payload_name = payload_name; GetVideoEncoderConfig()->codec_type = PayloadStringToCodecType(payload_name); SetVideoEncoderConfig(/* number_of_streams */ 1); }); } void PictureIdTest::SetVideoEncoderConfig(int num_streams) { GetVideoEncoderConfig()->number_of_streams = num_streams; GetVideoEncoderConfig()->max_bitrate_bps = kEncoderBitrateBps; // Always divide the same total bitrate across all streams so that sending a // single stream avoids lowering the bitrate estimate and requiring a // subsequent rampup. const int encoder_stream_bps = kEncoderBitrateBps / num_streams; double scale_factor = 1.0; for (int i = num_streams - 1; i >= 0; --i) { VideoStream& stream = GetVideoEncoderConfig()->simulcast_layers[i]; // Reduce the min bitrate by 10% to account for overhead that might // otherwise cause streams to not be enabled. stream.min_bitrate_bps = static_cast(encoder_stream_bps * 0.9); stream.target_bitrate_bps = encoder_stream_bps; stream.max_bitrate_bps = encoder_stream_bps; stream.num_temporal_layers = num_temporal_layers_; stream.scale_resolution_down_by = scale_factor; scale_factor *= 2.0; } } void PictureIdTest::TestPictureIdContinuousAfterReconfigure( const std::vector& ssrc_counts) { SendTask(task_queue(), [this]() { CreateVideoStreams(); CreateFrameGeneratorCapturer(kFrameRate, kFrameMaxWidth, kFrameMaxHeight); // Initial test with a single stream. Start(); }); EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets."; // Reconfigure VideoEncoder and test picture id increase. // Expect continuously increasing picture id, equivalent to no gaps. observer_->SetMaxExpectedPictureIdGap(0); for (int ssrc_count : ssrc_counts) { SetVideoEncoderConfig(ssrc_count); observer_->SetExpectedSsrcs(ssrc_count); observer_->ResetObservedSsrcs(); // Make sure the picture_id sequence is continuous on reinit and recreate. SendTask(task_queue(), [this]() { GetVideoSendStream()->ReconfigureVideoEncoder( GetVideoEncoderConfig()->Copy()); }); EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets."; } SendTask(task_queue(), [this]() { Stop(); DestroyStreams(); }); } void PictureIdTest::TestPictureIdIncreaseAfterRecreateStreams( const std::vector& ssrc_counts) { SendTask(task_queue(), [this]() { CreateVideoStreams(); CreateFrameGeneratorCapturer(kFrameRate, kFrameMaxWidth, kFrameMaxHeight); // Initial test with a single stream. Start(); }); EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets."; // Recreate VideoSendStream and test picture id increase. // When the VideoSendStream is destroyed, any frames still in queue is lost // with it, therefore it is expected that some frames might be lost. observer_->SetMaxExpectedPictureIdGap(kMaxFramesLost); for (int ssrc_count : ssrc_counts) { SendTask(task_queue(), [this, &ssrc_count]() { DestroyVideoSendStreams(); SetVideoEncoderConfig(ssrc_count); observer_->SetExpectedSsrcs(ssrc_count); observer_->ResetObservedSsrcs(); CreateVideoSendStreams(); GetVideoSendStream()->Start(); CreateFrameGeneratorCapturer(kFrameRate, kFrameMaxWidth, kFrameMaxHeight); }); EXPECT_TRUE(observer_->Wait()) << "Timed out waiting for packets."; } SendTask(task_queue(), [this]() { Stop(); DestroyStreams(); }); } TEST_P(PictureIdTest, ContinuousAfterReconfigureVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); SetupEncoder(&encoder_factory, "VP8"); TestPictureIdContinuousAfterReconfigure({1, 3, 3, 1, 1}); } TEST_P(PictureIdTest, IncreasingAfterRecreateStreamVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); SetupEncoder(&encoder_factory, "VP8"); TestPictureIdIncreaseAfterRecreateStreams({1, 3, 3, 1, 1}); } TEST_P(PictureIdTest, ContinuousAfterStreamCountChangeVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); // Make sure that the picture id is not reset if the stream count goes // down and then up. SetupEncoder(&encoder_factory, "VP8"); TestPictureIdContinuousAfterReconfigure({3, 1, 3}); } TEST_P(PictureIdTest, ContinuousAfterReconfigureSimulcastEncoderAdapter) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); SetupEncoder(&encoder_factory, "VP8"); TestPictureIdContinuousAfterReconfigure({1, 3, 3, 1, 1}); } TEST_P(PictureIdTest, IncreasingAfterRecreateStreamSimulcastEncoderAdapter) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); SetupEncoder(&encoder_factory, "VP8"); TestPictureIdIncreaseAfterRecreateStreams({1, 3, 3, 1, 1}); } TEST_P(PictureIdTest, ContinuousAfterStreamCountChangeSimulcastEncoderAdapter) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); // Make sure that the picture id is not reset if the stream count goes // down and then up. SetupEncoder(&encoder_factory, "VP8"); TestPictureIdContinuousAfterReconfigure({3, 1, 3}); } TEST_P(PictureIdTest, IncreasingAfterRecreateStreamVp9) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP9Encoder::Create(); }); SetupEncoder(&encoder_factory, "VP9"); TestPictureIdIncreaseAfterRecreateStreams({1, 1}); } } // namespace webrtc