/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include // max #include #include #include "absl/algorithm/container.h" #include "absl/strings/match.h" #include "api/sequence_checker.h" #include "api/task_queue/default_task_queue_factory.h" #include "api/task_queue/task_queue_base.h" #include "api/test/metrics/global_metrics_logger_and_exporter.h" #include "api/test/metrics/metric.h" #include "api/test/simulated_network.h" #include "api/units/time_delta.h" #include "api/video/builtin_video_bitrate_allocator_factory.h" #include "api/video/encoded_image.h" #include "api/video/video_bitrate_allocation.h" #include "api/video_codecs/video_encoder.h" #include "call/call.h" #include "call/fake_network_pipe.h" #include "call/rtp_transport_controller_send.h" #include "call/simulated_network.h" #include "call/video_send_stream.h" #include "media/engine/internal_encoder_factory.h" #include "media/engine/simulcast_encoder_adapter.h" #include "media/engine/webrtc_video_engine.h" #include "modules/rtp_rtcp/include/rtp_header_extension_map.h" #include "modules/rtp_rtcp/source/create_video_rtp_depacketizer.h" #include "modules/rtp_rtcp/source/rtcp_sender.h" #include "modules/rtp_rtcp/source/rtp_header_extensions.h" #include "modules/rtp_rtcp/source/rtp_packet.h" #include "modules/rtp_rtcp/source/rtp_rtcp_impl2.h" #include "modules/rtp_rtcp/source/rtp_util.h" #include "modules/rtp_rtcp/source/video_rtp_depacketizer_vp9.h" #include "modules/video_coding/codecs/interface/common_constants.h" #include "modules/video_coding/codecs/vp8/include/vp8.h" #include "modules/video_coding/codecs/vp9/include/vp9.h" #include "modules/video_coding/svc/create_scalability_structure.h" #include "modules/video_coding/svc/scalability_mode_util.h" #include "modules/video_coding/svc/scalable_video_controller.h" #include "rtc_base/checks.h" #include "rtc_base/event.h" #include "rtc_base/experiments/alr_experiment.h" #include "rtc_base/logging.h" #include "rtc_base/platform_thread.h" #include "rtc_base/rate_limiter.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/synchronization/mutex.h" #include "rtc_base/task_queue_for_test.h" #include "rtc_base/time_utils.h" #include "rtc_base/unique_id_generator.h" #include "system_wrappers/include/sleep.h" #include "test/call_test.h" #include "test/configurable_frame_size_encoder.h" #include "test/fake_encoder.h" #include "test/fake_texture_frame.h" #include "test/frame_forwarder.h" #include "test/frame_generator_capturer.h" #include "test/frame_utils.h" #include "test/gmock.h" #include "test/gtest.h" #include "test/null_transport.h" #include "test/rtcp_packet_parser.h" #include "test/rtp_rtcp_observer.h" #include "test/video_encoder_proxy_factory.h" #include "video/config/encoder_stream_factory.h" #include "video/send_statistics_proxy.h" #include "video/transport_adapter.h" #include "video/video_send_stream.h" namespace webrtc { namespace test { class VideoSendStreamPeer { public: explicit VideoSendStreamPeer(webrtc::VideoSendStream* base_class_stream) : internal_stream_( static_cast(base_class_stream)) {} absl::optional GetPacingFactorOverride() const { return internal_stream_->GetPacingFactorOverride(); } private: internal::VideoSendStream const* const internal_stream_; }; } // namespace test namespace { enum : int { // The first valid value is 1. kAbsSendTimeExtensionId = 1, kTimestampOffsetExtensionId, kTransportSequenceNumberExtensionId, kVideoContentTypeExtensionId, kVideoRotationExtensionId, kVideoTimingExtensionId, }; // Readability convenience enum for `WaitBitrateChanged()`. enum class WaitUntil : bool { kZero = false, kNonZero = true }; constexpr int64_t kRtcpIntervalMs = 1000; enum VideoFormat { kGeneric, kVP8, }; struct Vp9TestParams { std::string scalability_mode; uint8_t num_spatial_layers; uint8_t num_temporal_layers; InterLayerPredMode inter_layer_pred; }; using ParameterizationType = std::tuple; std::string ParamInfoToStr( const testing::TestParamInfo& info) { rtc::StringBuilder sb; sb << std::get<0>(info.param).scalability_mode << "_" << (std::get<1>(info.param) ? "WithIdentifier" : "WithoutIdentifier"); return sb.str(); } } // namespace class VideoSendStreamTest : public test::CallTest { public: VideoSendStreamTest() { RegisterRtpExtension(RtpExtension(RtpExtension::kTransportSequenceNumberUri, kTransportSequenceNumberExtensionId)); } protected: void TestNackRetransmission(uint32_t retransmit_ssrc, uint8_t retransmit_payload_type); void TestPacketFragmentationSize(VideoFormat format, bool with_fec); void TestVp9NonFlexMode(const Vp9TestParams& params, bool use_scalability_mode_identifier); void TestRequestSourceRotateVideo(bool support_orientation_ext); void TestTemporalLayers(VideoEncoderFactory* encoder_factory, const std::string& payload_name, const std::vector& num_temporal_layers, const std::vector& scalability_mode); }; TEST_F(VideoSendStreamTest, CanStartStartedStream) { SendTask(task_queue(), [this]() { CreateSenderCall(); test::NullTransport transport; CreateSendConfig(1, 0, 0, &transport); CreateVideoStreams(); GetVideoSendStream()->Start(); GetVideoSendStream()->Start(); DestroyStreams(); DestroyCalls(); }); } TEST_F(VideoSendStreamTest, CanStopStoppedStream) { SendTask(task_queue(), [this]() { CreateSenderCall(); test::NullTransport transport; CreateSendConfig(1, 0, 0, &transport); CreateVideoStreams(); GetVideoSendStream()->Stop(); GetVideoSendStream()->Stop(); DestroyStreams(); DestroyCalls(); }); } TEST_F(VideoSendStreamTest, SupportsCName) { static std::string kCName = "PjQatC14dGfbVwGPUOA9IH7RlsFDbWl4AhXEiDsBizo="; class CNameObserver : public test::SendTest { public: CNameObserver() : SendTest(kDefaultTimeout) {} private: Action OnSendRtcp(const uint8_t* packet, size_t length) override { test::RtcpPacketParser parser; EXPECT_TRUE(parser.Parse(packet, length)); if (parser.sdes()->num_packets() > 0) { EXPECT_EQ(1u, parser.sdes()->chunks().size()); EXPECT_EQ(kCName, parser.sdes()->chunks()[0].cname); observation_complete_.Set(); } return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.c_name = kCName; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for RTCP with CNAME."; } } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsAbsoluteSendTime) { class AbsoluteSendTimeObserver : public test::SendTest { public: AbsoluteSendTimeObserver() : SendTest(kDefaultTimeout) { extensions_.Register(kAbsSendTimeExtensionId); } Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); uint32_t abs_send_time = 0; EXPECT_FALSE(rtp_packet.HasExtension()); EXPECT_TRUE(rtp_packet.GetExtension(&abs_send_time)); if (abs_send_time != 0) { // Wait for at least one packet with a non-zero send time. The send time // is a 16-bit value derived from the system clock, and it is valid // for a packet to have a zero send time. To tell that from an // unpopulated value we'll wait for a packet with non-zero send time. observation_complete_.Set(); } else { RTC_LOG(LS_WARNING) << "Got a packet with zero absoluteSendTime, waiting" " for another packet..."; } return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back( RtpExtension(RtpExtension::kAbsSendTimeUri, kAbsSendTimeExtensionId)); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for single RTP packet."; } private: RtpHeaderExtensionMap extensions_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsTransmissionTimeOffset) { static const int kEncodeDelayMs = 5; class TransmissionTimeOffsetObserver : public test::SendTest { public: TransmissionTimeOffsetObserver() : SendTest(kDefaultTimeout), encoder_factory_([]() { return std::make_unique( Clock::GetRealTimeClock(), kEncodeDelayMs); }) { extensions_.Register(kTimestampOffsetExtensionId); } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); int32_t toffset = 0; EXPECT_TRUE(rtp_packet.GetExtension(&toffset)); EXPECT_FALSE(rtp_packet.HasExtension()); EXPECT_GT(toffset, 0); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kTimestampOffsetUri, kTimestampOffsetExtensionId)); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for a single RTP packet."; } test::FunctionVideoEncoderFactory encoder_factory_; RtpHeaderExtensionMap extensions_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsTransportWideSequenceNumbers) { static const uint8_t kExtensionId = kTransportSequenceNumberExtensionId; class TransportWideSequenceNumberObserver : public test::SendTest { public: TransportWideSequenceNumberObserver() : SendTest(kDefaultTimeout), encoder_factory_([]() { return std::make_unique( Clock::GetRealTimeClock()); }) { extensions_.Register(kExtensionId); } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); EXPECT_TRUE(rtp_packet.HasExtension()); EXPECT_FALSE(rtp_packet.HasExtension()); EXPECT_FALSE(rtp_packet.HasExtension()); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for a single RTP packet."; } test::FunctionVideoEncoderFactory encoder_factory_; RtpHeaderExtensionMap extensions_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsVideoRotation) { class VideoRotationObserver : public test::SendTest { public: VideoRotationObserver() : SendTest(kDefaultTimeout) { extensions_.Register(kVideoRotationExtensionId); } Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); // Only the last packet of the frame is required to have the extension. if (!rtp_packet.Marker()) return SEND_PACKET; EXPECT_EQ(rtp_packet.GetExtension(), kVideoRotation_90); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kVideoRotationUri, kVideoRotationExtensionId)); } void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { frame_generator_capturer->SetFakeRotation(kVideoRotation_90); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for single RTP packet."; } private: RtpHeaderExtensionMap extensions_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsVideoContentType) { class VideoContentTypeObserver : public test::SendTest { public: VideoContentTypeObserver() : SendTest(kDefaultTimeout), first_frame_sent_(false) { extensions_.Register( kVideoContentTypeExtensionId); } Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); // Only the last packet of the key-frame must have extension. if (!rtp_packet.Marker() || first_frame_sent_) return SEND_PACKET; // First marker bit seen means that the first frame is sent. first_frame_sent_ = true; VideoContentType type; EXPECT_TRUE(rtp_packet.GetExtension(&type)); EXPECT_TRUE(videocontenttypehelpers::IsScreenshare(type)); observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kVideoContentTypeUri, kVideoContentTypeExtensionId)); encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for single RTP packet."; } private: bool first_frame_sent_; RtpHeaderExtensionMap extensions_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsVideoTimingFrames) { class VideoTimingObserver : public test::SendTest { public: VideoTimingObserver() : SendTest(kDefaultTimeout), first_frame_sent_(false) { extensions_.Register(kVideoTimingExtensionId); } Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); // Only the last packet of the frame must have extension. // Also don't check packets of the second frame if they happen to get // through before the test terminates. if (!rtp_packet.Marker() || first_frame_sent_) return SEND_PACKET; EXPECT_TRUE(rtp_packet.HasExtension()); observation_complete_.Set(); first_frame_sent_ = true; return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back( RtpExtension(RtpExtension::kVideoTimingUri, kVideoTimingExtensionId)); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for timing frames."; } private: RtpHeaderExtensionMap extensions_; bool first_frame_sent_; } test; RunBaseTest(&test); } class FakeReceiveStatistics : public ReceiveStatisticsProvider { public: FakeReceiveStatistics(uint32_t send_ssrc, uint32_t last_sequence_number, uint32_t cumulative_lost, uint8_t fraction_lost) { stat_.SetMediaSsrc(send_ssrc); stat_.SetExtHighestSeqNum(last_sequence_number); stat_.SetCumulativeLost(cumulative_lost); stat_.SetFractionLost(fraction_lost); } std::vector RtcpReportBlocks(size_t max_blocks) override { EXPECT_GE(max_blocks, 1u); return {stat_}; } private: rtcp::ReportBlock stat_; }; class UlpfecObserver : public test::EndToEndTest { public: // Some of the test cases are expected to time out. // Use a shorter timeout window than the default one for those. static constexpr TimeDelta kReducedTimeout = TimeDelta::Seconds(10); UlpfecObserver(bool header_extensions_enabled, bool use_nack, bool expect_red, bool expect_ulpfec, const std::string& codec, VideoEncoderFactory* encoder_factory) : EndToEndTest(expect_ulpfec ? VideoSendStreamTest::kDefaultTimeout : kReducedTimeout), encoder_factory_(encoder_factory), payload_name_(codec), use_nack_(use_nack), expect_red_(expect_red), expect_ulpfec_(expect_ulpfec), sent_media_(false), sent_ulpfec_(false), header_extensions_enabled_(header_extensions_enabled) { extensions_.Register(kAbsSendTimeExtensionId); extensions_.Register( kTransportSequenceNumberExtensionId); } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); int encapsulated_payload_type = -1; if (rtp_packet.PayloadType() == VideoSendStreamTest::kRedPayloadType) { EXPECT_TRUE(expect_red_); encapsulated_payload_type = rtp_packet.payload()[0]; if (encapsulated_payload_type != VideoSendStreamTest::kFakeVideoSendPayloadType) { EXPECT_EQ(VideoSendStreamTest::kUlpfecPayloadType, encapsulated_payload_type); } } else { EXPECT_EQ(VideoSendStreamTest::kFakeVideoSendPayloadType, rtp_packet.PayloadType()); if (rtp_packet.payload_size() > 0) { // Not padding-only, media received outside of RED. EXPECT_FALSE(expect_red_); sent_media_ = true; } } if (header_extensions_enabled_) { uint32_t abs_send_time; EXPECT_TRUE(rtp_packet.GetExtension(&abs_send_time)); uint16_t transport_seq_num; EXPECT_TRUE( rtp_packet.GetExtension(&transport_seq_num)); if (!first_packet_) { uint32_t kHalf24BitsSpace = 0xFFFFFF / 2; if (abs_send_time <= kHalf24BitsSpace && prev_abs_send_time_ > kHalf24BitsSpace) { // 24 bits wrap. EXPECT_GT(prev_abs_send_time_, abs_send_time); } else { EXPECT_GE(abs_send_time, prev_abs_send_time_); } uint16_t seq_num_diff = transport_seq_num - prev_transport_seq_num_; EXPECT_EQ(1, seq_num_diff); } first_packet_ = false; prev_abs_send_time_ = abs_send_time; prev_transport_seq_num_ = transport_seq_num; } if (encapsulated_payload_type != -1) { if (encapsulated_payload_type == VideoSendStreamTest::kUlpfecPayloadType) { EXPECT_TRUE(expect_ulpfec_); sent_ulpfec_ = true; } else { sent_media_ = true; } } if (sent_media_ && sent_ulpfec_) { observation_complete_.Set(); } return SEND_PACKET; } BuiltInNetworkBehaviorConfig GetSendTransportConfig() const override { // At low RTT (< kLowRttNackMs) -> NACK only, no FEC. // Configure some network delay. const int kNetworkDelayMs = 100; BuiltInNetworkBehaviorConfig config; config.loss_percent = 5; config.queue_delay_ms = kNetworkDelayMs; return config; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { if (use_nack_) { send_config->rtp.nack.rtp_history_ms = (*receive_configs)[0].rtp.nack.rtp_history_ms = VideoSendStreamTest::kNackRtpHistoryMs; } send_config->encoder_settings.encoder_factory = encoder_factory_; send_config->rtp.payload_name = payload_name_; send_config->rtp.ulpfec.red_payload_type = VideoSendStreamTest::kRedPayloadType; send_config->rtp.ulpfec.ulpfec_payload_type = VideoSendStreamTest::kUlpfecPayloadType; if (!header_extensions_enabled_) { send_config->rtp.extensions.clear(); } else { send_config->rtp.extensions.push_back( RtpExtension(RtpExtension::kAbsSendTimeUri, kAbsSendTimeExtensionId)); } (*receive_configs)[0].rtp.extensions = send_config->rtp.extensions; encoder_config->codec_type = PayloadStringToCodecType(payload_name_); (*receive_configs)[0].rtp.red_payload_type = send_config->rtp.ulpfec.red_payload_type; (*receive_configs)[0].rtp.ulpfec_payload_type = send_config->rtp.ulpfec.ulpfec_payload_type; } void PerformTest() override { EXPECT_EQ(expect_ulpfec_, Wait()) << "Timed out waiting for ULPFEC and/or media packets."; } VideoEncoderFactory* encoder_factory_; RtpHeaderExtensionMap extensions_; const std::string payload_name_; const bool use_nack_; const bool expect_red_; const bool expect_ulpfec_; bool sent_media_; bool sent_ulpfec_; const bool header_extensions_enabled_; bool first_packet_ = true; uint32_t prev_abs_send_time_ = 0; uint16_t prev_transport_seq_num_ = 0; }; TEST_F(VideoSendStreamTest, SupportsUlpfecWithExtensions) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); UlpfecObserver test(true, false, true, true, "VP8", &encoder_factory); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsUlpfecWithoutExtensions) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); UlpfecObserver test(false, false, true, true, "VP8", &encoder_factory); RunBaseTest(&test); } class VideoSendStreamWithoutUlpfecTest : public test::CallTest { protected: VideoSendStreamWithoutUlpfecTest() : field_trial_(field_trials_, "WebRTC-DisableUlpFecExperiment/Enabled/") { } test::ScopedKeyValueConfig field_trial_; }; TEST_F(VideoSendStreamWithoutUlpfecTest, NoUlpfecIfDisabledThroughFieldTrial) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); UlpfecObserver test(false, false, false, false, "VP8", &encoder_factory); RunBaseTest(&test); } // The FEC scheme used is not efficient for H264, so we should not use RED/FEC // since we'll still have to re-request FEC packets, effectively wasting // bandwidth since the receiver has to wait for FEC retransmissions to determine // that the received state is actually decodable. TEST_F(VideoSendStreamTest, DoesNotUtilizeUlpfecForH264WithNackEnabled) { test::FunctionVideoEncoderFactory encoder_factory([]() { return std::make_unique(Clock::GetRealTimeClock()); }); UlpfecObserver test(false, true, false, false, "H264", &encoder_factory); RunBaseTest(&test); } // Without retransmissions FEC for H264 is fine. TEST_F(VideoSendStreamTest, DoesUtilizeUlpfecForH264WithoutNackEnabled) { test::FunctionVideoEncoderFactory encoder_factory([]() { return std::make_unique(Clock::GetRealTimeClock()); }); UlpfecObserver test(false, false, true, true, "H264", &encoder_factory); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, DoesUtilizeUlpfecForVp8WithNackEnabled) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); UlpfecObserver test(false, true, true, true, "VP8", &encoder_factory); RunBaseTest(&test); } #if defined(RTC_ENABLE_VP9) TEST_F(VideoSendStreamTest, DoesUtilizeUlpfecForVp9WithNackEnabled) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP9Encoder::Create(); }); UlpfecObserver test(false, true, true, true, "VP9", &encoder_factory); RunBaseTest(&test); } #endif // defined(RTC_ENABLE_VP9) TEST_F(VideoSendStreamTest, SupportsUlpfecWithMultithreadedH264) { std::unique_ptr task_queue_factory = CreateDefaultTaskQueueFactory(); test::FunctionVideoEncoderFactory encoder_factory([&]() { return std::make_unique( Clock::GetRealTimeClock(), task_queue_factory.get()); }); UlpfecObserver test(false, false, true, true, "H264", &encoder_factory); RunBaseTest(&test); } // TODO(brandtr): Move these FlexFEC tests when we have created // FlexfecSendStream. class FlexfecObserver : public test::EndToEndTest { public: FlexfecObserver(bool header_extensions_enabled, bool use_nack, const std::string& codec, VideoEncoderFactory* encoder_factory, size_t num_video_streams) : EndToEndTest(VideoSendStreamTest::kDefaultTimeout), encoder_factory_(encoder_factory), payload_name_(codec), use_nack_(use_nack), sent_media_(false), sent_flexfec_(false), header_extensions_enabled_(header_extensions_enabled), num_video_streams_(num_video_streams) { extensions_.Register(kAbsSendTimeExtensionId); extensions_.Register(kTimestampOffsetExtensionId); extensions_.Register( kTransportSequenceNumberExtensionId); } size_t GetNumFlexfecStreams() const override { return 1; } size_t GetNumVideoStreams() const override { return num_video_streams_; } private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet(&extensions_); EXPECT_TRUE(rtp_packet.Parse(packet, length)); if (rtp_packet.PayloadType() == VideoSendStreamTest::kFlexfecPayloadType) { EXPECT_EQ(VideoSendStreamTest::kFlexfecSendSsrc, rtp_packet.Ssrc()); sent_flexfec_ = true; } else { EXPECT_EQ(VideoSendStreamTest::kFakeVideoSendPayloadType, rtp_packet.PayloadType()); EXPECT_THAT(::testing::make_tuple(VideoSendStreamTest::kVideoSendSsrcs, num_video_streams_), ::testing::Contains(rtp_packet.Ssrc())); sent_media_ = true; } if (header_extensions_enabled_) { EXPECT_TRUE(rtp_packet.HasExtension()); EXPECT_TRUE(rtp_packet.HasExtension()); EXPECT_TRUE(rtp_packet.HasExtension()); } if (sent_media_ && sent_flexfec_) { observation_complete_.Set(); } return SEND_PACKET; } BuiltInNetworkBehaviorConfig GetSendTransportConfig() const { // At low RTT (< kLowRttNackMs) -> NACK only, no FEC. // Therefore we need some network delay. const int kNetworkDelayMs = 100; BuiltInNetworkBehaviorConfig config; config.loss_percent = 5; config.queue_delay_ms = kNetworkDelayMs; return config; } BuiltInNetworkBehaviorConfig GetReceiveTransportConfig() const { // We need the RTT to be >200 ms to send FEC and the network delay for the // send transport is 100 ms, so add 100 ms (but no loss) on the return link. BuiltInNetworkBehaviorConfig config; config.loss_percent = 0; config.queue_delay_ms = 100; return config; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { if (use_nack_) { send_config->rtp.nack.rtp_history_ms = (*receive_configs)[0].rtp.nack.rtp_history_ms = VideoSendStreamTest::kNackRtpHistoryMs; } send_config->encoder_settings.encoder_factory = encoder_factory_; send_config->rtp.payload_name = payload_name_; if (header_extensions_enabled_) { send_config->rtp.extensions.push_back( RtpExtension(RtpExtension::kAbsSendTimeUri, kAbsSendTimeExtensionId)); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kTimestampOffsetUri, kTimestampOffsetExtensionId)); } else { send_config->rtp.extensions.clear(); } (*receive_configs)[0].rtp.extensions = send_config->rtp.extensions; encoder_config->codec_type = PayloadStringToCodecType(payload_name_); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out waiting for FlexFEC and/or media packets."; } VideoEncoderFactory* encoder_factory_; RtpHeaderExtensionMap extensions_; const std::string payload_name_; const bool use_nack_; bool sent_media_; bool sent_flexfec_; const bool header_extensions_enabled_; const size_t num_video_streams_; }; TEST_F(VideoSendStreamTest, SupportsFlexfecVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); FlexfecObserver test(false, false, "VP8", &encoder_factory, 1); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFlexfecSimulcastVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); FlexfecObserver test(false, false, "VP8", &encoder_factory, 2); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFlexfecWithNackVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); FlexfecObserver test(false, true, "VP8", &encoder_factory, 1); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFlexfecWithRtpExtensionsVp8) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); FlexfecObserver test(true, false, "VP8", &encoder_factory, 1); RunBaseTest(&test); } #if defined(RTC_ENABLE_VP9) TEST_F(VideoSendStreamTest, SupportsFlexfecVp9) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP9Encoder::Create(); }); FlexfecObserver test(false, false, "VP9", &encoder_factory, 1); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFlexfecWithNackVp9) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP9Encoder::Create(); }); FlexfecObserver test(false, true, "VP9", &encoder_factory, 1); RunBaseTest(&test); } #endif // defined(RTC_ENABLE_VP9) TEST_F(VideoSendStreamTest, SupportsFlexfecH264) { test::FunctionVideoEncoderFactory encoder_factory([]() { return std::make_unique(Clock::GetRealTimeClock()); }); FlexfecObserver test(false, false, "H264", &encoder_factory, 1); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFlexfecWithNackH264) { test::FunctionVideoEncoderFactory encoder_factory([]() { return std::make_unique(Clock::GetRealTimeClock()); }); FlexfecObserver test(false, true, "H264", &encoder_factory, 1); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, SupportsFlexfecWithMultithreadedH264) { std::unique_ptr task_queue_factory = CreateDefaultTaskQueueFactory(); test::FunctionVideoEncoderFactory encoder_factory([&]() { return std::make_unique( Clock::GetRealTimeClock(), task_queue_factory.get()); }); FlexfecObserver test(false, false, "H264", &encoder_factory, 1); RunBaseTest(&test); } void VideoSendStreamTest::TestNackRetransmission( uint32_t retransmit_ssrc, uint8_t retransmit_payload_type) { class NackObserver : public test::SendTest { public: explicit NackObserver(uint32_t retransmit_ssrc, uint8_t retransmit_payload_type) : SendTest(kDefaultTimeout), send_count_(0), retransmit_count_(0), retransmit_ssrc_(retransmit_ssrc), retransmit_payload_type_(retransmit_payload_type) {} private: Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); // NACK packets two times at some arbitrary points. const int kNackedPacketsAtOnceCount = 3; const int kRetransmitTarget = kNackedPacketsAtOnceCount * 2; // Skip padding packets because they will never be retransmitted. if (rtp_packet.payload_size() == 0) { return SEND_PACKET; } ++send_count_; // NACK packets at arbitrary points. if (send_count_ % 25 == 0) { RTCPSender::Configuration config; config.clock = Clock::GetRealTimeClock(); config.outgoing_transport = transport_adapter_.get(); config.rtcp_report_interval = TimeDelta::Millis(kRtcpIntervalMs); config.local_media_ssrc = kReceiverLocalVideoSsrc; RTCPSender rtcp_sender(config); rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize); rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]); RTCPSender::FeedbackState feedback_state; uint16_t nack_sequence_numbers[kNackedPacketsAtOnceCount]; int nack_count = 0; for (uint16_t sequence_number : sequence_numbers_pending_retransmission_) { if (nack_count < kNackedPacketsAtOnceCount) { nack_sequence_numbers[nack_count++] = sequence_number; } else { break; } } EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpNack, nack_count, nack_sequence_numbers)); } uint16_t sequence_number = rtp_packet.SequenceNumber(); if (rtp_packet.Ssrc() == retransmit_ssrc_ && retransmit_ssrc_ != kVideoSendSsrcs[0]) { // Not kVideoSendSsrcs[0], assume correct RTX packet. Extract sequence // number. const uint8_t* rtx_header = rtp_packet.payload().data(); sequence_number = (rtx_header[0] << 8) + rtx_header[1]; } auto it = sequence_numbers_pending_retransmission_.find(sequence_number); if (it == sequence_numbers_pending_retransmission_.end()) { // Not currently pending retransmission. Add it to retransmission queue // if media and limit not reached. if (rtp_packet.Ssrc() == kVideoSendSsrcs[0] && rtp_packet.payload_size() > 0 && retransmit_count_ + sequence_numbers_pending_retransmission_.size() < kRetransmitTarget) { sequence_numbers_pending_retransmission_.insert(sequence_number); return DROP_PACKET; } } else { // Packet is a retransmission, remove it from queue and check if done. sequence_numbers_pending_retransmission_.erase(it); if (++retransmit_count_ == kRetransmitTarget) { EXPECT_EQ(retransmit_ssrc_, rtp_packet.Ssrc()); EXPECT_EQ(retransmit_payload_type_, rtp_packet.PayloadType()); observation_complete_.Set(); } } return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { transport_adapter_.reset( new internal::TransportAdapter(send_config->send_transport)); transport_adapter_->Enable(); send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs; send_config->rtp.rtx.payload_type = retransmit_payload_type_; if (retransmit_ssrc_ != kVideoSendSsrcs[0]) send_config->rtp.rtx.ssrcs.push_back(retransmit_ssrc_); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for NACK retransmission."; } std::unique_ptr transport_adapter_; int send_count_; int retransmit_count_; const uint32_t retransmit_ssrc_; const uint8_t retransmit_payload_type_; std::set sequence_numbers_pending_retransmission_; } test(retransmit_ssrc, retransmit_payload_type); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, RetransmitsNack) { // Normal NACKs should use the send SSRC. TestNackRetransmission(kVideoSendSsrcs[0], kFakeVideoSendPayloadType); } TEST_F(VideoSendStreamTest, RetransmitsNackOverRtx) { // NACKs over RTX should use a separate SSRC. TestNackRetransmission(kSendRtxSsrcs[0], kSendRtxPayloadType); } void VideoSendStreamTest::TestPacketFragmentationSize(VideoFormat format, bool with_fec) { // Use a fake encoder to output a frame of every size in the range [90, 290], // for each size making sure that the exact number of payload bytes received // is correct and that packets are fragmented to respect max packet size. static const size_t kMaxPacketSize = 128; static const size_t start = 90; static const size_t stop = 290; // Observer that verifies that the expected number of packets and bytes // arrive for each frame size, from start_size to stop_size. class FrameFragmentationTest : public test::SendTest { public: FrameFragmentationTest(size_t max_packet_size, size_t start_size, size_t stop_size, bool test_generic_packetization, bool use_fec) : SendTest(kLongTimeout), encoder_(stop), encoder_factory_(&encoder_), max_packet_size_(max_packet_size), stop_size_(stop_size), test_generic_packetization_(test_generic_packetization), use_fec_(use_fec), packet_count_(0), packets_lost_(0), last_packet_count_(0), last_packets_lost_(0), accumulated_size_(0), accumulated_payload_(0), fec_packet_received_(false), current_size_rtp_(start_size), current_size_frame_(static_cast(start_size)) { // Fragmentation required, this test doesn't make sense without it. encoder_.SetFrameSize(start_size); RTC_DCHECK_GT(stop_size, max_packet_size); if (!test_generic_packetization_) encoder_.SetCodecType(kVideoCodecVP8); } private: Action OnSendRtp(const uint8_t* packet, size_t size) override { size_t length = size; RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); EXPECT_LE(length, max_packet_size_); if (use_fec_ && rtp_packet.payload_size() > 0) { uint8_t payload_type = rtp_packet.payload()[0]; bool is_fec = rtp_packet.PayloadType() == kRedPayloadType && payload_type == kUlpfecPayloadType; if (is_fec) { fec_packet_received_ = true; return SEND_PACKET; } } accumulated_size_ += length; if (use_fec_) TriggerLossReport(rtp_packet); if (test_generic_packetization_) { size_t overhead = rtp_packet.headers_size() + rtp_packet.padding_size(); // Only remove payload header and RED header if the packet actually // contains payload. if (length > overhead) { overhead += (1 /* Generic header */); if (use_fec_) overhead += 1; // RED for FEC header. } EXPECT_GE(length, overhead); accumulated_payload_ += length - overhead; } // Marker bit set indicates last packet of a frame. if (rtp_packet.Marker()) { if (use_fec_ && accumulated_payload_ == current_size_rtp_ - 1) { // With FEC enabled, frame size is incremented asynchronously, so // "old" frames one byte too small may arrive. Accept, but don't // increase expected frame size. accumulated_size_ = 0; accumulated_payload_ = 0; return SEND_PACKET; } EXPECT_GE(accumulated_size_, current_size_rtp_); if (test_generic_packetization_) { EXPECT_EQ(current_size_rtp_, accumulated_payload_); } // Last packet of frame; reset counters. accumulated_size_ = 0; accumulated_payload_ = 0; if (current_size_rtp_ == stop_size_) { // Done! (Don't increase size again, might arrive more @ stop_size). observation_complete_.Set(); } else { // Increase next expected frame size. If testing with FEC, make sure // a FEC packet has been received for this frame size before // proceeding, to make sure that redundancy packets don't exceed // size limit. if (!use_fec_) { ++current_size_rtp_; } else if (fec_packet_received_) { fec_packet_received_ = false; ++current_size_rtp_; MutexLock lock(&mutex_); ++current_size_frame_; } } } return SEND_PACKET; } void TriggerLossReport(const RtpPacket& rtp_packet) { // Send lossy receive reports to trigger FEC enabling. const int kLossPercent = 5; if (++packet_count_ % (100 / kLossPercent) == 0) { packets_lost_++; int loss_delta = packets_lost_ - last_packets_lost_; int packets_delta = packet_count_ - last_packet_count_; last_packet_count_ = packet_count_; last_packets_lost_ = packets_lost_; uint8_t loss_ratio = static_cast(loss_delta * 255 / packets_delta); FakeReceiveStatistics lossy_receive_stats( kVideoSendSsrcs[0], rtp_packet.SequenceNumber(), packets_lost_, // Cumulative lost. loss_ratio); // Loss percent. RTCPSender::Configuration config; config.clock = Clock::GetRealTimeClock(); config.receive_statistics = &lossy_receive_stats; config.outgoing_transport = transport_adapter_.get(); config.rtcp_report_interval = TimeDelta::Millis(kRtcpIntervalMs); config.local_media_ssrc = kVideoSendSsrcs[0]; RTCPSender rtcp_sender(config); rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize); rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]); RTCPSender::FeedbackState feedback_state; EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr)); } } void UpdateConfiguration() { MutexLock lock(&mutex_); // Increase frame size for next encoded frame, in the context of the // encoder thread. if (!use_fec_ && current_size_frame_ < static_cast(stop_size_)) { ++current_size_frame_; } encoder_.SetFrameSize(static_cast(current_size_frame_)); } void ModifySenderBitrateConfig( BitrateConstraints* bitrate_config) override { const int kMinBitrateBps = 300000; bitrate_config->min_bitrate_bps = kMinBitrateBps; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { transport_adapter_.reset( new internal::TransportAdapter(send_config->send_transport)); transport_adapter_->Enable(); if (use_fec_) { send_config->rtp.ulpfec.red_payload_type = kRedPayloadType; send_config->rtp.ulpfec.ulpfec_payload_type = kUlpfecPayloadType; } if (!test_generic_packetization_) send_config->rtp.payload_name = "VP8"; send_config->encoder_settings.encoder_factory = &encoder_factory_; send_config->rtp.max_packet_size = kMaxPacketSize; encoder_.RegisterPostEncodeCallback([this]() { UpdateConfiguration(); }); // Make sure there is at least one extension header, to make the RTP // header larger than the base length of 12 bytes. EXPECT_FALSE(send_config->rtp.extensions.empty()); // Setup screen content disables frame dropping which makes this easier. EXPECT_EQ(1u, encoder_config->simulcast_layers.size()); encoder_config->simulcast_layers[0].num_temporal_layers = 2; encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while observing incoming RTP packets."; } std::unique_ptr transport_adapter_; test::ConfigurableFrameSizeEncoder encoder_; test::VideoEncoderProxyFactory encoder_factory_; const size_t max_packet_size_; const size_t stop_size_; const bool test_generic_packetization_; const bool use_fec_; uint32_t packet_count_; uint32_t packets_lost_; uint32_t last_packet_count_; uint32_t last_packets_lost_; size_t accumulated_size_; size_t accumulated_payload_; bool fec_packet_received_; size_t current_size_rtp_; Mutex mutex_; int current_size_frame_ RTC_GUARDED_BY(mutex_); }; // Don't auto increment if FEC is used; continue sending frame size until // a FEC packet has been received. FrameFragmentationTest test(kMaxPacketSize, start, stop, format == kGeneric, with_fec); RunBaseTest(&test); } // TODO(sprang): Is there any way of speeding up these tests? TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSize) { TestPacketFragmentationSize(kGeneric, false); } TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSizeWithFec) { TestPacketFragmentationSize(kGeneric, true); } TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSize) { TestPacketFragmentationSize(kVP8, false); } TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSizeWithFec) { TestPacketFragmentationSize(kVP8, true); } // This test that padding stops being send after a while if the Camera stops // producing video frames and that padding resumes if the camera restarts. TEST_F(VideoSendStreamTest, NoPaddingWhenVideoIsMuted) { class NoPaddingWhenVideoIsMuted : public test::SendTest { public: NoPaddingWhenVideoIsMuted() : SendTest(kDefaultTimeout), clock_(Clock::GetRealTimeClock()), capturer_(nullptr) {} private: Action OnSendRtp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); last_packet_time_ms_ = clock_->TimeInMilliseconds(); RtpPacket rtp_packet; rtp_packet.Parse(packet, length); const bool only_padding = rtp_packet.payload_size() == 0; if (test_state_ == kBeforeStopCapture) { // Packets are flowing, stop camera. capturer_->Stop(); test_state_ = kWaitingForPadding; } else if (test_state_ == kWaitingForPadding && only_padding) { // We're still getting padding, after stopping camera. test_state_ = kWaitingForNoPackets; } else if (test_state_ == kWaitingForMediaAfterCameraRestart && !only_padding) { // Media packets are flowing again, stop camera a second time. capturer_->Stop(); test_state_ = kWaitingForPaddingAfterCameraStopsAgain; } else if (test_state_ == kWaitingForPaddingAfterCameraStopsAgain && only_padding) { // Padding is still flowing, test ok. observation_complete_.Set(); } return SEND_PACKET; } Action OnSendRtcp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); const int kNoPacketsThresholdMs = 2000; if (test_state_ == kWaitingForNoPackets && (last_packet_time_ms_ && clock_->TimeInMilliseconds() - last_packet_time_ms_.value() > kNoPacketsThresholdMs)) { // No packets seen for `kNoPacketsThresholdMs`, restart camera. capturer_->Start(); test_state_ = kWaitingForMediaAfterCameraRestart; } return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { // Make sure padding is sent if encoder is not producing media. encoder_config->min_transmit_bitrate_bps = 50000; } void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { MutexLock lock(&mutex_); capturer_ = frame_generator_capturer; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for RTP packets to stop being sent."; } enum TestState { kBeforeStopCapture, kWaitingForPadding, kWaitingForNoPackets, kWaitingForMediaAfterCameraRestart, kWaitingForPaddingAfterCameraStopsAgain }; TestState test_state_ = kBeforeStopCapture; Clock* const clock_; Mutex mutex_; absl::optional last_packet_time_ms_ RTC_GUARDED_BY(mutex_); test::FrameGeneratorCapturer* capturer_ RTC_GUARDED_BY(mutex_); } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, PaddingIsPrimarilyRetransmissions) { const int kCapacityKbps = 10000; // 10 Mbps class PaddingIsPrimarilyRetransmissions : public test::EndToEndTest { public: PaddingIsPrimarilyRetransmissions() : EndToEndTest(kDefaultTimeout), clock_(Clock::GetRealTimeClock()), padding_length_(0), total_length_(0), call_(nullptr) {} private: void OnCallsCreated(Call* sender_call, Call* receiver_call) override { call_ = sender_call; } Action OnSendRtp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); RtpPacket rtp_packet; rtp_packet.Parse(packet, length); padding_length_ += rtp_packet.padding_size(); total_length_ += length; return SEND_PACKET; } BuiltInNetworkBehaviorConfig GetSendTransportConfig() const override { const int kNetworkDelayMs = 50; BuiltInNetworkBehaviorConfig config; config.loss_percent = 10; config.link_capacity_kbps = kCapacityKbps; config.queue_delay_ms = kNetworkDelayMs; return config; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { // Turn on RTX. send_config->rtp.rtx.payload_type = kFakeVideoSendPayloadType; send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[0]); } void PerformTest() override { // TODO(isheriff): Some platforms do not ramp up as expected to full // capacity due to packet scheduling delays. Fix that before getting // rid of this. SleepMs(5000); { MutexLock lock(&mutex_); // Expect padding to be a small percentage of total bytes sent. EXPECT_LT(padding_length_, .1 * total_length_); } } Mutex mutex_; Clock* const clock_; size_t padding_length_ RTC_GUARDED_BY(mutex_); size_t total_length_ RTC_GUARDED_BY(mutex_); Call* call_; } test; RunBaseTest(&test); } // This test first observes "high" bitrate use at which point it sends a REMB to // indicate that it should be lowered significantly. The test then observes that // the bitrate observed is sinking well below the min-transmit-bitrate threshold // to verify that the min-transmit bitrate respects incoming REMB. // // Note that the test starts at "high" bitrate and does not ramp up to "higher" // bitrate since no receiver block or remb is sent in the initial phase. TEST_F(VideoSendStreamTest, MinTransmitBitrateRespectsRemb) { static const int kMinTransmitBitrateBps = 400000; static const int kHighBitrateBps = 150000; static const int kRembBitrateBps = 80000; static const int kRembRespectedBitrateBps = 100000; class BitrateObserver : public test::SendTest { public: explicit BitrateObserver(TaskQueueBase* task_queue) : SendTest(kDefaultTimeout), task_queue_(task_queue), retranmission_rate_limiter_(Clock::GetRealTimeClock(), 1000), stream_(nullptr), bitrate_capped_(false), task_safety_flag_(PendingTaskSafetyFlag::CreateDetached()) {} private: Action OnSendRtp(const uint8_t* packet, size_t length) override { if (IsRtcpPacket(rtc::MakeArrayView(packet, length))) return DROP_PACKET; RtpPacket rtp_packet; RTC_CHECK(rtp_packet.Parse(packet, length)); const uint32_t ssrc = rtp_packet.Ssrc(); RTC_DCHECK(stream_); task_queue_->PostTask(SafeTask(task_safety_flag_, [this, ssrc]() { VideoSendStream::Stats stats = stream_->GetStats(); if (!stats.substreams.empty()) { EXPECT_EQ(1u, stats.substreams.size()); int total_bitrate_bps = stats.substreams.begin()->second.total_bitrate_bps; test::GetGlobalMetricsLogger()->LogSingleValueMetric( "bitrate_stats_min_transmit_bitrate_low_remb", "bitrate_bps", static_cast(total_bitrate_bps) / 1000.0, test::Unit::kKilobitsPerSecond, test::ImprovementDirection::kNeitherIsBetter); if (total_bitrate_bps > kHighBitrateBps) { rtp_rtcp_->SetRemb(kRembBitrateBps, {ssrc}); bitrate_capped_ = true; } else if (bitrate_capped_ && total_bitrate_bps < kRembRespectedBitrateBps) { observation_complete_.Set(); } } })); // Packets don't have to be delivered since the test is the receiver. return DROP_PACKET; } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; RtpRtcpInterface::Configuration config; config.clock = Clock::GetRealTimeClock(); config.outgoing_transport = feedback_transport_.get(); config.retransmission_rate_limiter = &retranmission_rate_limiter_; rtp_rtcp_ = ModuleRtpRtcpImpl2::Create(config); rtp_rtcp_->SetRTCPStatus(RtcpMode::kReducedSize); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { feedback_transport_.reset( new internal::TransportAdapter(send_config->send_transport)); feedback_transport_->Enable(); encoder_config->min_transmit_bitrate_bps = kMinTransmitBitrateBps; } void OnStreamsStopped() override { task_safety_flag_->SetNotAlive(); rtp_rtcp_.reset(); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timeout while waiting for low bitrate stats after REMB."; } TaskQueueBase* const task_queue_; std::unique_ptr rtp_rtcp_; std::unique_ptr feedback_transport_; RateLimiter retranmission_rate_limiter_; VideoSendStream* stream_; bool bitrate_capped_; rtc::scoped_refptr task_safety_flag_; } test(task_queue()); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, ChangingNetworkRoute) { static const int kStartBitrateBps = 300000; static const int kNewMaxBitrateBps = 1234567; static const uint8_t kExtensionId = kTransportSequenceNumberExtensionId; class ChangingNetworkRouteTest : public test::EndToEndTest { public: explicit ChangingNetworkRouteTest(TaskQueueBase* task_queue) : EndToEndTest(test::CallTest::kDefaultTimeout), task_queue_(task_queue), call_(nullptr) { module_process_thread_.Detach(); task_queue_thread_.Detach(); extensions_.Register(kExtensionId); } ~ChangingNetworkRouteTest() { // Block until all already posted tasks run to avoid 'use after free' // when such task accesses `this`. SendTask(task_queue_, [] {}); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { RTC_DCHECK_RUN_ON(&task_queue_thread_); RTC_DCHECK(!call_); call_ = sender_call; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { RTC_DCHECK_RUN_ON(&task_queue_thread_); send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kTransportSequenceNumberUri, kExtensionId)); (*receive_configs)[0].rtp.extensions = send_config->rtp.extensions; } void ModifyAudioConfigs(AudioSendStream::Config* send_config, std::vector* receive_configs) override { RTC_DCHECK_RUN_ON(&task_queue_thread_); send_config->rtp.extensions.clear(); send_config->rtp.extensions.push_back(RtpExtension( RtpExtension::kTransportSequenceNumberUri, kExtensionId)); (*receive_configs)[0].rtp.extensions.clear(); (*receive_configs)[0].rtp.extensions = send_config->rtp.extensions; } Action OnSendRtp(const uint8_t* packet, size_t length) override { RTC_DCHECK_RUN_ON(&module_process_thread_); task_queue_->PostTask([this]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); if (!call_) return; Call::Stats stats = call_->GetStats(); if (stats.send_bandwidth_bps > kStartBitrateBps) observation_complete_.Set(); }); return SEND_PACKET; } void OnStreamsStopped() override { RTC_DCHECK_RUN_ON(&task_queue_thread_); call_ = nullptr; } void PerformTest() override { rtc::NetworkRoute new_route; new_route.connected = true; new_route.local = rtc::RouteEndpoint::CreateWithNetworkId(10); new_route.remote = rtc::RouteEndpoint::CreateWithNetworkId(20); BitrateConstraints bitrate_config; SendTask(task_queue_, [this, &new_route, &bitrate_config]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); call_->GetTransportControllerSend()->OnNetworkRouteChanged( "transport", new_route); bitrate_config.start_bitrate_bps = kStartBitrateBps; call_->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); }); EXPECT_TRUE(Wait()) << "Timed out while waiting for start bitrate to be exceeded."; SendTask( task_queue_, [this, &new_route, &bitrate_config]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); bitrate_config.start_bitrate_bps = -1; bitrate_config.max_bitrate_bps = kNewMaxBitrateBps; call_->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); // TODO(holmer): We should set the last sent packet id here and // verify that we correctly ignore any packet loss reported prior to // that id. new_route.local = rtc::RouteEndpoint::CreateWithNetworkId( new_route.local.network_id() + 1); call_->GetTransportControllerSend()->OnNetworkRouteChanged( "transport", new_route); EXPECT_GE(call_->GetStats().send_bandwidth_bps, kStartBitrateBps); }); } private: webrtc::SequenceChecker module_process_thread_; webrtc::SequenceChecker task_queue_thread_; TaskQueueBase* const task_queue_; RtpHeaderExtensionMap extensions_; Call* call_ RTC_GUARDED_BY(task_queue_thread_); } test(task_queue()); RunBaseTest(&test); } // Test that if specified, relay cap is lifted on transition to direct // connection. // TODO(https://bugs.webrtc.org/13353): Test disabled due to flakiness. TEST_F(VideoSendStreamTest, DISABLED_RelayToDirectRoute) { static const int kStartBitrateBps = 300000; static const int kRelayBandwidthCapBps = 800000; static const int kMinPacketsToSend = 100; webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Bwe-NetworkRouteConstraints/relay_cap:" + std::to_string(kRelayBandwidthCapBps) + "bps/"); class RelayToDirectRouteTest : public test::EndToEndTest { public: explicit RelayToDirectRouteTest(TaskQueueBase* task_queue) : EndToEndTest(test::CallTest::kDefaultTimeout), task_queue_(task_queue), call_(nullptr), packets_sent_(0), relayed_phase_(true) { module_process_thread_.Detach(); task_queue_thread_.Detach(); } ~RelayToDirectRouteTest() { // Block until all already posted tasks run to avoid 'use after free' // when such task accesses `this`. SendTask(task_queue_, [] {}); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { RTC_DCHECK_RUN_ON(&task_queue_thread_); RTC_DCHECK(!call_); call_ = sender_call; } Action OnSendRtp(const uint8_t* packet, size_t length) override { RTC_DCHECK_RUN_ON(&module_process_thread_); task_queue_->PostTask([this]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); if (!call_) return; bool had_time_to_exceed_cap_in_relayed_phase = relayed_phase_ && ++packets_sent_ > kMinPacketsToSend; bool did_exceed_cap = call_->GetStats().send_bandwidth_bps > kRelayBandwidthCapBps; if (did_exceed_cap || had_time_to_exceed_cap_in_relayed_phase) observation_complete_.Set(); }); return SEND_PACKET; } void OnStreamsStopped() override { RTC_DCHECK_RUN_ON(&task_queue_thread_); call_ = nullptr; } void PerformTest() override { rtc::NetworkRoute route; route.connected = true; route.local = rtc::RouteEndpoint::CreateWithNetworkId(10); route.remote = rtc::RouteEndpoint::CreateWithNetworkId(20); SendTask(task_queue_, [this, &route]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); relayed_phase_ = true; route.remote = route.remote.CreateWithTurn(true); call_->GetTransportControllerSend()->OnNetworkRouteChanged("transport", route); BitrateConstraints bitrate_config; bitrate_config.start_bitrate_bps = kStartBitrateBps; call_->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); }); EXPECT_TRUE(Wait()) << "Timeout waiting for sufficient packets sent count."; SendTask(task_queue_, [this, &route]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); EXPECT_LE(call_->GetStats().send_bandwidth_bps, kRelayBandwidthCapBps); route.remote = route.remote.CreateWithTurn(false); call_->GetTransportControllerSend()->OnNetworkRouteChanged("transport", route); relayed_phase_ = false; observation_complete_.Reset(); }); EXPECT_TRUE(Wait()) << "Timeout while waiting for bandwidth to outgrow relay cap."; } private: webrtc::SequenceChecker module_process_thread_; webrtc::SequenceChecker task_queue_thread_; TaskQueueBase* const task_queue_; Call* call_ RTC_GUARDED_BY(task_queue_thread_); int packets_sent_ RTC_GUARDED_BY(task_queue_thread_); bool relayed_phase_ RTC_GUARDED_BY(task_queue_thread_); } test(task_queue()); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, ChangingTransportOverhead) { class ChangingTransportOverheadTest : public test::EndToEndTest { public: explicit ChangingTransportOverheadTest(TaskQueueBase* task_queue) : EndToEndTest(test::CallTest::kDefaultTimeout), task_queue_(task_queue), call_(nullptr), packets_sent_(0), transport_overhead_(0) {} void OnCallsCreated(Call* sender_call, Call* receiver_call) override { call_ = sender_call; } Action OnSendRtp(const uint8_t* packet, size_t length) override { EXPECT_LE(length, kMaxRtpPacketSize); MutexLock lock(&lock_); if (++packets_sent_ < 100) return SEND_PACKET; observation_complete_.Set(); return SEND_PACKET; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.max_packet_size = kMaxRtpPacketSize; } void PerformTest() override { SendTask(task_queue_, [this]() { transport_overhead_ = 100; call_->GetTransportControllerSend()->OnTransportOverheadChanged( transport_overhead_); }); EXPECT_TRUE(Wait()); { MutexLock lock(&lock_); packets_sent_ = 0; } SendTask(task_queue_, [this]() { transport_overhead_ = 500; call_->GetTransportControllerSend()->OnTransportOverheadChanged( transport_overhead_); }); EXPECT_TRUE(Wait()); } private: TaskQueueBase* const task_queue_; Call* call_; Mutex lock_; int packets_sent_ RTC_GUARDED_BY(lock_); int transport_overhead_; const size_t kMaxRtpPacketSize = 1000; } test(task_queue()); RunBaseTest(&test); } // Test class takes takes as argument a switch selecting if type switch should // occur and a function pointer to reset the send stream. This is necessary // since you cannot change the content type of a VideoSendStream, you need to // recreate it. Stopping and recreating the stream can only be done on the main // thread and in the context of VideoSendStreamTest (not BaseTest). template class MaxPaddingSetTest : public test::SendTest { public: static const uint32_t kMinTransmitBitrateBps = 400000; static const uint32_t kActualEncodeBitrateBps = 40000; static const uint32_t kMinPacketsToSend = 50; MaxPaddingSetTest(bool test_switch_content_type, T* stream_reset_fun, TaskQueueBase* task_queue) : SendTest(test::CallTest::kDefaultTimeout), running_without_padding_(test_switch_content_type), stream_resetter_(stream_reset_fun), task_queue_(task_queue) { RTC_DCHECK(stream_resetter_); module_process_thread_.Detach(); task_queue_thread_.Detach(); } ~MaxPaddingSetTest() { // Block until all already posted tasks run to avoid 'use after free' // when such task accesses `this`. SendTask(task_queue_, [] {}); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { RTC_DCHECK_RUN_ON(&task_queue_thread_); RTC_DCHECK_EQ(1, encoder_config->number_of_streams); if (running_without_padding_) { encoder_config->min_transmit_bitrate_bps = 0; encoder_config->content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; } else { encoder_config->min_transmit_bitrate_bps = kMinTransmitBitrateBps; encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; } send_stream_config_ = send_config->Copy(); encoder_config_ = encoder_config->Copy(); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { RTC_DCHECK_RUN_ON(&task_queue_thread_); RTC_DCHECK(task_queue_->IsCurrent()); RTC_DCHECK(!call_); RTC_DCHECK(sender_call); call_ = sender_call; } // Called on the pacer thread. Action OnSendRtp(const uint8_t* packet, size_t length) override { RTC_DCHECK_RUN_ON(&module_process_thread_); // Check the stats on the correct thread and signal the 'complete' flag // once we detect that we're done. task_queue_->PostTask([this]() { RTC_DCHECK_RUN_ON(&task_queue_thread_); // In case we get a callback during teardown. // When this happens, OnStreamsStopped() has been called already, // `call_` is null and the streams are being torn down. if (!call_) return; ++packets_sent_; Call::Stats stats = call_->GetStats(); if (running_without_padding_) { EXPECT_EQ(0, stats.max_padding_bitrate_bps); // Wait until at least kMinPacketsToSend frames have been encoded, so // that we have reliable data. if (packets_sent_ < kMinPacketsToSend) return; // We've sent kMinPacketsToSend packets with default configuration, // switch to enabling screen content and setting min transmit bitrate. // Note that we need to recreate the stream if changing content type. packets_sent_ = 0; encoder_config_.min_transmit_bitrate_bps = kMinTransmitBitrateBps; encoder_config_.content_type = VideoEncoderConfig::ContentType::kScreen; running_without_padding_ = false; (*stream_resetter_)(send_stream_config_, encoder_config_); } else { // Make sure the pacer has been configured with a min transmit bitrate. if (stats.max_padding_bitrate_bps > 0) { observation_complete_.Set(); } } }); return SEND_PACKET; } // Called on `task_queue_` void OnStreamsStopped() override { RTC_DCHECK_RUN_ON(&task_queue_thread_); RTC_DCHECK(task_queue_->IsCurrent()); call_ = nullptr; } void PerformTest() override { ASSERT_TRUE(Wait()) << "Timed out waiting for a valid padding bitrate."; } private: webrtc::SequenceChecker task_queue_thread_; Call* call_ RTC_GUARDED_BY(task_queue_thread_) = nullptr; VideoSendStream::Config send_stream_config_{nullptr}; VideoEncoderConfig encoder_config_; webrtc::SequenceChecker module_process_thread_; uint32_t packets_sent_ RTC_GUARDED_BY(task_queue_thread_) = 0; bool running_without_padding_ RTC_GUARDED_BY(task_queue_thread_); T* const stream_resetter_; TaskQueueBase* const task_queue_; }; TEST_F(VideoSendStreamTest, RespectsMinTransmitBitrate) { auto reset_fun = [](const VideoSendStream::Config& send_stream_config, const VideoEncoderConfig& encoder_config) {}; MaxPaddingSetTest test(false, &reset_fun, task_queue()); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, RespectsMinTransmitBitrateAfterContentSwitch) { // Function for removing and recreating the send stream with a new config. auto reset_fun = [this](const VideoSendStream::Config& send_stream_config, const VideoEncoderConfig& encoder_config) { RTC_DCHECK(task_queue()->IsCurrent()); Stop(); DestroyVideoSendStreams(); SetVideoSendConfig(send_stream_config); SetVideoEncoderConfig(encoder_config); CreateVideoSendStreams(); SetVideoDegradation(DegradationPreference::MAINTAIN_RESOLUTION); Start(); }; MaxPaddingSetTest test(true, &reset_fun, task_queue()); RunBaseTest(&test); } // This test verifies that new frame sizes reconfigures encoders even though not // (yet) sending. The purpose of this is to permit encoding as quickly as // possible once we start sending. Likely the frames being input are from the // same source that will be sent later, which just means that we're ready // earlier. TEST_F(VideoSendStreamTest, EncoderReconfigureOnResolutionChangeWhenNotSending) { class EncoderObserver : public test::FakeEncoder { public: EncoderObserver() : FakeEncoder(Clock::GetRealTimeClock()), last_initialized_frame_width_(0), last_initialized_frame_height_(0) {} void WaitForResolution(int width, int height) { { MutexLock lock(&mutex_); if (last_initialized_frame_width_ == width && last_initialized_frame_height_ == height) { return; } } EXPECT_TRUE( init_encode_called_.Wait(VideoSendStreamTest::kDefaultTimeout)); { MutexLock lock(&mutex_); EXPECT_EQ(width, last_initialized_frame_width_); EXPECT_EQ(height, last_initialized_frame_height_); } } private: int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { MutexLock lock(&mutex_); last_initialized_frame_width_ = config->width; last_initialized_frame_height_ = config->height; init_encode_called_.Set(); return FakeEncoder::InitEncode(config, settings); } int32_t Encode(const VideoFrame& input_image, const std::vector* frame_types) override { ADD_FAILURE() << "Unexpected Encode call since the send stream is not started"; return 0; } Mutex mutex_; rtc::Event init_encode_called_; int last_initialized_frame_width_ RTC_GUARDED_BY(&mutex_); int last_initialized_frame_height_ RTC_GUARDED_BY(&mutex_); }; test::NullTransport transport; EncoderObserver encoder; test::VideoEncoderProxyFactory encoder_factory(&encoder); SendTask(task_queue(), [this, &transport, &encoder_factory]() { CreateSenderCall(); CreateSendConfig(1, 0, 0, &transport); GetVideoSendConfig()->encoder_settings.encoder_factory = &encoder_factory; CreateVideoStreams(); CreateFrameGeneratorCapturer(kDefaultFramerate, kDefaultWidth, kDefaultHeight); frame_generator_capturer_->Start(); }); encoder.WaitForResolution(kDefaultWidth, kDefaultHeight); SendTask(task_queue(), [this]() { frame_generator_capturer_->ChangeResolution(kDefaultWidth * 2, kDefaultHeight * 2); }); encoder.WaitForResolution(kDefaultWidth * 2, kDefaultHeight * 2); SendTask(task_queue(), [this]() { DestroyStreams(); DestroyCalls(); }); } TEST_F(VideoSendStreamTest, CanReconfigureToUseStartBitrateAbovePreviousMax) { class StartBitrateObserver : public test::FakeEncoder { public: StartBitrateObserver() : FakeEncoder(Clock::GetRealTimeClock()), start_bitrate_kbps_(0) {} int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { MutexLock lock(&mutex_); start_bitrate_kbps_ = config->startBitrate; start_bitrate_changed_.Set(); return FakeEncoder::InitEncode(config, settings); } void SetRates(const RateControlParameters& parameters) override { MutexLock lock(&mutex_); start_bitrate_kbps_ = parameters.bitrate.get_sum_kbps(); start_bitrate_changed_.Set(); FakeEncoder::SetRates(parameters); } int GetStartBitrateKbps() const { MutexLock lock(&mutex_); return start_bitrate_kbps_; } bool WaitForStartBitrate() { return start_bitrate_changed_.Wait(VideoSendStreamTest::kDefaultTimeout); } private: mutable Mutex mutex_; rtc::Event start_bitrate_changed_; int start_bitrate_kbps_ RTC_GUARDED_BY(mutex_); }; CreateSenderCall(); test::NullTransport transport; CreateSendConfig(1, 0, 0, &transport); BitrateConstraints bitrate_config; bitrate_config.start_bitrate_bps = 2 * GetVideoEncoderConfig()->max_bitrate_bps; sender_call_->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); StartBitrateObserver encoder; test::VideoEncoderProxyFactory encoder_factory(&encoder); GetVideoSendConfig()->encoder_settings.encoder_factory = &encoder_factory; CreateVideoStreams(); // Start capturing and encoding frames to force encoder reconfiguration. CreateFrameGeneratorCapturer(kDefaultFramerate, kDefaultWidth, kDefaultHeight); frame_generator_capturer_->Start(); // TODO(crbug/1255737): Added manual current thread message processing because // the test code context is interpreted as the worker thread and we assume // progress on it. The test should probably be ported to use simulated time // instead (ported to a scenario test perhaps?). rtc::Thread::Current()->ProcessMessages(5000); EXPECT_TRUE(encoder.WaitForStartBitrate()); EXPECT_EQ(GetVideoEncoderConfig()->max_bitrate_bps / 1000, encoder.GetStartBitrateKbps()); GetVideoEncoderConfig()->max_bitrate_bps = 2 * bitrate_config.start_bitrate_bps; GetVideoSendStream()->ReconfigureVideoEncoder( GetVideoEncoderConfig()->Copy()); // TODO(crbug/1255737): Added manual current thread message processing because // the test code context is interpreted as the worker thread and we assume // progress on it. The test should probably be ported to use simulated time // instead (ported to a scenario test perhaps?). rtc::Thread::Current()->ProcessMessages(5000); // New bitrate should be reconfigured above the previous max. As there's no // network connection this shouldn't be flaky, as no bitrate should've been // reported in between. EXPECT_TRUE(encoder.WaitForStartBitrate()); EXPECT_EQ(bitrate_config.start_bitrate_bps / 1000, encoder.GetStartBitrateKbps()); DestroyStreams(); } class StartStopBitrateObserver : public test::FakeEncoder { public: StartStopBitrateObserver() : FakeEncoder(Clock::GetRealTimeClock()) {} int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { MutexLock lock(&mutex_); encoder_init_.Set(); return FakeEncoder::InitEncode(config, settings); } void SetRates(const RateControlParameters& parameters) override { MutexLock lock(&mutex_); bitrate_kbps_ = parameters.bitrate.get_sum_kbps(); bitrate_changed_.Set(); FakeEncoder::SetRates(parameters); } bool WaitForEncoderInit() { return encoder_init_.Wait(VideoSendStreamTest::kDefaultTimeout); } bool WaitBitrateChanged(WaitUntil until) { do { absl::optional bitrate_kbps; { MutexLock lock(&mutex_); bitrate_kbps = bitrate_kbps_; } if (!bitrate_kbps) continue; if ((until == WaitUntil::kNonZero && *bitrate_kbps > 0) || (until == WaitUntil::kZero && *bitrate_kbps == 0)) { return true; } } while (bitrate_changed_.Wait(VideoSendStreamTest::kDefaultTimeout)); return false; } private: Mutex mutex_; rtc::Event encoder_init_; rtc::Event bitrate_changed_; absl::optional bitrate_kbps_ RTC_GUARDED_BY(mutex_); }; TEST_F(VideoSendStreamTest, EncoderIsProperlyInitializedAndDestroyed) { class EncoderStateObserver : public test::SendTest, public VideoEncoder { public: explicit EncoderStateObserver(TaskQueueBase* task_queue) : SendTest(kDefaultTimeout), task_queue_(task_queue), stream_(nullptr), initialized_(false), callback_registered_(false), num_releases_(0), released_(false), encoder_factory_(this) {} bool IsReleased() RTC_LOCKS_EXCLUDED(mutex_) { MutexLock lock(&mutex_); return released_; } bool IsReadyForEncode() RTC_LOCKS_EXCLUDED(mutex_) { MutexLock lock(&mutex_); return IsReadyForEncodeLocked(); } size_t num_releases() RTC_LOCKS_EXCLUDED(mutex_) { MutexLock lock(&mutex_); return num_releases_; } private: bool IsReadyForEncodeLocked() RTC_EXCLUSIVE_LOCKS_REQUIRED(mutex_) { return initialized_ && callback_registered_; } void SetFecControllerOverride( FecControllerOverride* fec_controller_override) override { // Ignored. } int32_t InitEncode(const VideoCodec* codecSettings, const Settings& settings) override RTC_LOCKS_EXCLUDED(mutex_) { MutexLock lock(&mutex_); EXPECT_FALSE(initialized_); initialized_ = true; released_ = false; return 0; } int32_t Encode(const VideoFrame& inputImage, const std::vector* frame_types) override { EXPECT_TRUE(IsReadyForEncode()); observation_complete_.Set(); return 0; } int32_t RegisterEncodeCompleteCallback( EncodedImageCallback* callback) override RTC_LOCKS_EXCLUDED(mutex_) { MutexLock lock(&mutex_); EXPECT_TRUE(initialized_); callback_registered_ = true; return 0; } int32_t Release() override RTC_LOCKS_EXCLUDED(mutex_) { MutexLock lock(&mutex_); EXPECT_TRUE(IsReadyForEncodeLocked()); EXPECT_FALSE(released_); initialized_ = false; callback_registered_ = false; released_ = true; ++num_releases_; return 0; } void SetRates(const RateControlParameters& parameters) override { EXPECT_TRUE(IsReadyForEncode()); } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; encoder_config_ = encoder_config->Copy(); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for Encode."; SendTask(task_queue_, [this]() { EXPECT_EQ(0u, num_releases()); stream_->ReconfigureVideoEncoder(std::move(encoder_config_)); EXPECT_EQ(0u, num_releases()); stream_->Stop(); // Encoder should not be released before destroying the VideoSendStream. EXPECT_FALSE(IsReleased()); EXPECT_TRUE(IsReadyForEncode()); stream_->Start(); }); // Sanity check, make sure we still encode frames with this encoder. EXPECT_TRUE(Wait()) << "Timed out while waiting for Encode."; } TaskQueueBase* const task_queue_; Mutex mutex_; VideoSendStream* stream_; bool initialized_ RTC_GUARDED_BY(mutex_); bool callback_registered_ RTC_GUARDED_BY(mutex_); size_t num_releases_ RTC_GUARDED_BY(mutex_); bool released_ RTC_GUARDED_BY(mutex_); test::VideoEncoderProxyFactory encoder_factory_; VideoEncoderConfig encoder_config_; } test_encoder(task_queue()); RunBaseTest(&test_encoder); EXPECT_TRUE(test_encoder.IsReleased()); EXPECT_EQ(1u, test_encoder.num_releases()); } static const size_t kVideoCodecConfigObserverNumberOfTemporalLayers = 3; template class VideoCodecConfigObserver : public test::SendTest, public test::FakeEncoder { public: VideoCodecConfigObserver(VideoCodecType video_codec_type, TaskQueueBase* task_queue) : SendTest(VideoSendStreamTest::kDefaultTimeout), FakeEncoder(Clock::GetRealTimeClock()), video_codec_type_(video_codec_type), stream_(nullptr), encoder_factory_(this), task_queue_(task_queue) { InitCodecSpecifics(); } private: void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; send_config->rtp.payload_name = CodecTypeToPayloadString(video_codec_type_); encoder_config->codec_type = video_codec_type_; encoder_config->encoder_specific_settings = GetEncoderSpecificSettings(); EXPECT_EQ(1u, encoder_config->simulcast_layers.size()); encoder_config->simulcast_layers[0].num_temporal_layers = kVideoCodecConfigObserverNumberOfTemporalLayers; encoder_config_ = encoder_config->Copy(); } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { stream_ = send_stream; } int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { EXPECT_EQ(video_codec_type_, config->codecType); VerifyCodecSpecifics(*config); int ret = FakeEncoder::InitEncode(config, settings); init_encode_event_.Set(); return ret; } void InitCodecSpecifics(); void VerifyCodecSpecifics(const VideoCodec& config) const; rtc::scoped_refptr GetEncoderSpecificSettings() const; void PerformTest() override { EXPECT_TRUE(init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeout)); ASSERT_EQ(1, FakeEncoder::GetNumInitializations()) << "VideoEncoder not initialized."; // Change encoder settings to actually trigger reconfiguration. encoder_config_.frame_drop_enabled = !encoder_config_.frame_drop_enabled; encoder_config_.encoder_specific_settings = GetEncoderSpecificSettings(); SendTask(task_queue_, [&]() { stream_->ReconfigureVideoEncoder(std::move(encoder_config_)); }); ASSERT_TRUE(init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeout)); EXPECT_EQ(2, FakeEncoder::GetNumInitializations()) << "ReconfigureVideoEncoder did not reinitialize the encoder with " "new encoder settings."; } int32_t Encode(const VideoFrame& input_image, const std::vector* frame_types) override { // Silently skip the encode, FakeEncoder::Encode doesn't produce VP8. return 0; } T encoder_settings_; const VideoCodecType video_codec_type_; rtc::Event init_encode_event_; VideoSendStream* stream_; test::VideoEncoderProxyFactory encoder_factory_; VideoEncoderConfig encoder_config_; TaskQueueBase* task_queue_; }; template <> void VideoCodecConfigObserver::InitCodecSpecifics() {} template <> void VideoCodecConfigObserver::VerifyCodecSpecifics( const VideoCodec& config) const { // Check that the number of temporal layers has propagated properly to // VideoCodec. EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.H264().numberOfTemporalLayers); for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) { EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.simulcastStream[i].numberOfTemporalLayers); } // Set expected temporal layers as they should have been set when // reconfiguring the encoder and not match the set config. VideoCodecH264 encoder_settings = VideoEncoder::GetDefaultH264Settings(); encoder_settings.numberOfTemporalLayers = kVideoCodecConfigObserverNumberOfTemporalLayers; EXPECT_EQ(config.H264(), encoder_settings); } template <> rtc::scoped_refptr VideoCodecConfigObserver::GetEncoderSpecificSettings() const { return nullptr; } template <> void VideoCodecConfigObserver::InitCodecSpecifics() { encoder_settings_ = VideoEncoder::GetDefaultVp8Settings(); } template <> void VideoCodecConfigObserver::VerifyCodecSpecifics( const VideoCodec& config) const { // Check that the number of temporal layers has propagated properly to // VideoCodec. EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.VP8().numberOfTemporalLayers); for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) { EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.simulcastStream[i].numberOfTemporalLayers); } // Set expected temporal layers as they should have been set when // reconfiguring the encoder and not match the set config. VideoCodecVP8 encoder_settings = encoder_settings_; encoder_settings.numberOfTemporalLayers = kVideoCodecConfigObserverNumberOfTemporalLayers; EXPECT_EQ( 0, memcmp(&config.VP8(), &encoder_settings, sizeof(encoder_settings_))); } template <> rtc::scoped_refptr VideoCodecConfigObserver::GetEncoderSpecificSettings() const { return rtc::make_ref_counted( encoder_settings_); } template <> void VideoCodecConfigObserver::InitCodecSpecifics() { encoder_settings_ = VideoEncoder::GetDefaultVp9Settings(); } template <> void VideoCodecConfigObserver::VerifyCodecSpecifics( const VideoCodec& config) const { // Check that the number of temporal layers has propagated properly to // VideoCodec. EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.VP9().numberOfTemporalLayers); for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) { EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers, config.simulcastStream[i].numberOfTemporalLayers); } // Set expected temporal layers as they should have been set when // reconfiguring the encoder and not match the set config. VideoCodecVP9 encoder_settings = encoder_settings_; encoder_settings.numberOfTemporalLayers = kVideoCodecConfigObserverNumberOfTemporalLayers; EXPECT_EQ( 0, memcmp(&(config.VP9()), &encoder_settings, sizeof(encoder_settings_))); } template <> rtc::scoped_refptr VideoCodecConfigObserver::GetEncoderSpecificSettings() const { return rtc::make_ref_counted( encoder_settings_); } TEST_F(VideoSendStreamTest, EncoderSetupPropagatesVp8Config) { VideoCodecConfigObserver test(kVideoCodecVP8, task_queue()); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, EncoderSetupPropagatesVp9Config) { VideoCodecConfigObserver test(kVideoCodecVP9, task_queue()); RunBaseTest(&test); } // Fails on MSAN: https://bugs.chromium.org/p/webrtc/issues/detail?id=11376. #if defined(MEMORY_SANITIZER) #define MAYBE_EncoderSetupPropagatesH264Config \ DISABLED_EncoderSetupPropagatesH264Config #else #define MAYBE_EncoderSetupPropagatesH264Config EncoderSetupPropagatesH264Config #endif TEST_F(VideoSendStreamTest, MAYBE_EncoderSetupPropagatesH264Config) { VideoCodecConfigObserver test(kVideoCodecH264, task_queue()); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, RtcpSenderReportContainsMediaBytesSent) { class RtcpSenderReportTest : public test::SendTest { public: RtcpSenderReportTest() : SendTest(kDefaultTimeout), rtp_packets_sent_(0), media_bytes_sent_(0) {} private: Action OnSendRtp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); ++rtp_packets_sent_; media_bytes_sent_ += rtp_packet.payload_size(); return SEND_PACKET; } Action OnSendRtcp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); test::RtcpPacketParser parser; EXPECT_TRUE(parser.Parse(packet, length)); if (parser.sender_report()->num_packets() > 0) { // Only compare sent media bytes if SenderPacketCount matches the // number of sent rtp packets (a new rtp packet could be sent before // the rtcp packet). if (parser.sender_report()->sender_octet_count() > 0 && parser.sender_report()->sender_packet_count() == rtp_packets_sent_) { EXPECT_EQ(media_bytes_sent_, parser.sender_report()->sender_octet_count()); observation_complete_.Set(); } } return SEND_PACKET; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for RTCP sender report."; } Mutex mutex_; size_t rtp_packets_sent_ RTC_GUARDED_BY(&mutex_); size_t media_bytes_sent_ RTC_GUARDED_BY(&mutex_); } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, TranslatesTwoLayerScreencastToTargetBitrate) { static const int kScreencastMaxTargetBitrateDeltaKbps = 1; class VideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: VideoStreamFactory() {} private: std::vector CreateEncoderStreams( int frame_width, int frame_height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams(frame_width, frame_height, encoder_config); RTC_CHECK_GT(streams[0].max_bitrate_bps, kScreencastMaxTargetBitrateDeltaKbps); streams[0].target_bitrate_bps = streams[0].max_bitrate_bps - kScreencastMaxTargetBitrateDeltaKbps * 1000; return streams; } }; class ScreencastTargetBitrateTest : public test::SendTest, public test::FakeEncoder { public: ScreencastTargetBitrateTest() : SendTest(kDefaultTimeout), test::FakeEncoder(Clock::GetRealTimeClock()), encoder_factory_(this) {} private: int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { EXPECT_EQ(config->numberOfSimulcastStreams, 1); EXPECT_EQ(static_cast(kScreencastMaxTargetBitrateDeltaKbps), config->simulcastStream[0].maxBitrate - config->simulcastStream[0].targetBitrate); observation_complete_.Set(); return test::FakeEncoder::InitEncode(config, settings); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; EXPECT_EQ(1u, encoder_config->number_of_streams); encoder_config->video_stream_factory = rtc::make_ref_counted(); EXPECT_EQ(1u, encoder_config->simulcast_layers.size()); encoder_config->simulcast_layers[0].num_temporal_layers = 2; encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for the encoder to be initialized."; } test::VideoEncoderProxyFactory encoder_factory_; } test; RunBaseTest(&test); } TEST_F(VideoSendStreamTest, ReconfigureBitratesSetsEncoderBitratesCorrectly) { // These are chosen to be "kind of odd" to not be accidentally checked against // default values. static const int kMinBitrateKbps = 137; static const int kStartBitrateKbps = 345; static const int kLowerMaxBitrateKbps = 312; static const int kMaxBitrateKbps = 413; static const int kIncreasedStartBitrateKbps = 451; static const int kIncreasedMaxBitrateKbps = 597; // TODO(bugs.webrtc.org/12058): If these fields trial are on, we get lower // bitrates than expected by this test, due to encoder pushback and subtracted // overhead. webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-VideoRateControl/bitrate_adjuster:false/"); class EncoderBitrateThresholdObserver : public test::SendTest, public VideoBitrateAllocatorFactory, public test::FakeEncoder { public: explicit EncoderBitrateThresholdObserver(TaskQueueBase* task_queue) : SendTest(kDefaultTimeout), FakeEncoder(Clock::GetRealTimeClock()), task_queue_(task_queue), target_bitrate_(0), num_rate_allocator_creations_(0), num_encoder_initializations_(0), call_(nullptr), send_stream_(nullptr), encoder_factory_(this), bitrate_allocator_factory_( CreateBuiltinVideoBitrateAllocatorFactory()) {} private: std::unique_ptr CreateVideoBitrateAllocator( const VideoCodec& codec) override { EXPECT_GE(codec.startBitrate, codec.minBitrate); EXPECT_LE(codec.startBitrate, codec.maxBitrate); if (num_rate_allocator_creations_ == 0) { EXPECT_EQ(static_cast(kMinBitrateKbps), codec.minBitrate); EXPECT_NEAR(static_cast(kStartBitrateKbps), codec.startBitrate, 10); EXPECT_EQ(static_cast(kMaxBitrateKbps), codec.maxBitrate); } else if (num_rate_allocator_creations_ == 1) { EXPECT_EQ(static_cast(kLowerMaxBitrateKbps), codec.maxBitrate); // The start bitrate should be kept (-1) and capped to the max bitrate. // Since this is not an end-to-end call no receiver should have been // returning a REMB that could lower this estimate. EXPECT_EQ(codec.startBitrate, codec.maxBitrate); } else if (num_rate_allocator_creations_ == 2) { EXPECT_EQ(static_cast(kIncreasedMaxBitrateKbps), codec.maxBitrate); // The start bitrate will be whatever the rate BitRateController has // currently configured but in the span of the set max and min bitrate. } ++num_rate_allocator_creations_; create_rate_allocator_event_.Set(); return bitrate_allocator_factory_->CreateVideoBitrateAllocator(codec); } int32_t InitEncode(const VideoCodec* codecSettings, const Settings& settings) override { EXPECT_EQ(0, num_encoder_initializations_); EXPECT_EQ(static_cast(kMinBitrateKbps), codecSettings->minBitrate); EXPECT_NEAR(static_cast(kStartBitrateKbps), codecSettings->startBitrate, 10); EXPECT_EQ(static_cast(kMaxBitrateKbps), codecSettings->maxBitrate); ++num_encoder_initializations_; observation_complete_.Set(); init_encode_event_.Set(); return FakeEncoder::InitEncode(codecSettings, settings); } void SetRates(const RateControlParameters& parameters) override { { MutexLock lock(&mutex_); if (target_bitrate_ == parameters.bitrate.get_sum_kbps()) { FakeEncoder::SetRates(parameters); return; } target_bitrate_ = parameters.bitrate.get_sum_kbps(); } bitrate_changed_event_.Set(); FakeEncoder::SetRates(parameters); } void WaitForSetRates(uint32_t expected_bitrate, int abs_error) { // Wait for the expected rate to be set. In some cases there can be // more than one update pending, in which case we keep waiting // until the correct value has been observed. // The target_bitrate_ is reduced by the calculated packet overhead. const int64_t start_time = rtc::TimeMillis(); do { MutexLock lock(&mutex_); int error = target_bitrate_ - expected_bitrate; if ((error < 0 && error >= -abs_error) || (error >= 0 && error <= abs_error)) { return; } } while (bitrate_changed_event_.Wait( std::max(TimeDelta::Millis(1), VideoSendStreamTest::kDefaultTimeout - TimeDelta::Millis(rtc::TimeMillis() - start_time)))); MutexLock lock(&mutex_); EXPECT_NEAR(target_bitrate_, expected_bitrate, abs_error) << "Timed out while waiting encoder rate to be set."; } void ModifySenderBitrateConfig( BitrateConstraints* bitrate_config) override { bitrate_config->min_bitrate_bps = kMinBitrateKbps * 1000; bitrate_config->start_bitrate_bps = kStartBitrateKbps * 1000; bitrate_config->max_bitrate_bps = kMaxBitrateKbps * 1000; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; send_config->encoder_settings.bitrate_allocator_factory = this; // Set bitrates lower/higher than min/max to make sure they are properly // capped. encoder_config->max_bitrate_bps = kMaxBitrateKbps * 1000; EXPECT_EQ(1u, encoder_config->simulcast_layers.size()); encoder_config->simulcast_layers[0].min_bitrate_bps = kMinBitrateKbps * 1000; encoder_config_ = encoder_config->Copy(); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { call_ = sender_call; } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } void PerformTest() override { ASSERT_TRUE(create_rate_allocator_event_.Wait( VideoSendStreamTest::kDefaultTimeout)) << "Timed out while waiting for rate allocator to be created."; ASSERT_TRUE(init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeout)) << "Timed out while waiting for encoder to be configured."; WaitForSetRates(kStartBitrateKbps, 80); BitrateConstraints bitrate_config; bitrate_config.start_bitrate_bps = kIncreasedStartBitrateKbps * 1000; bitrate_config.max_bitrate_bps = kIncreasedMaxBitrateKbps * 1000; SendTask(task_queue_, [this, &bitrate_config]() { call_->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); }); // Encoder rate is capped by EncoderConfig max_bitrate_bps. WaitForSetRates(kMaxBitrateKbps, 10); encoder_config_.max_bitrate_bps = kLowerMaxBitrateKbps * 1000; SendTask(task_queue_, [&]() { send_stream_->ReconfigureVideoEncoder(encoder_config_.Copy()); }); ASSERT_TRUE(create_rate_allocator_event_.Wait( VideoSendStreamTest::kDefaultTimeout)); EXPECT_EQ(2, num_rate_allocator_creations_) << "Rate allocator should have been recreated."; WaitForSetRates(kLowerMaxBitrateKbps, 10); EXPECT_EQ(1, num_encoder_initializations_); encoder_config_.max_bitrate_bps = kIncreasedMaxBitrateKbps * 1000; SendTask(task_queue_, [&]() { send_stream_->ReconfigureVideoEncoder(encoder_config_.Copy()); }); ASSERT_TRUE(create_rate_allocator_event_.Wait( VideoSendStreamTest::kDefaultTimeout)); EXPECT_EQ(3, num_rate_allocator_creations_) << "Rate allocator should have been recreated."; // Expected target bitrate is the start bitrate set in the call to // call_->GetTransportControllerSend()->SetSdpBitrateParameters. WaitForSetRates(kIncreasedStartBitrateKbps, 10); EXPECT_EQ(1, num_encoder_initializations_); } TaskQueueBase* const task_queue_; rtc::Event create_rate_allocator_event_; rtc::Event init_encode_event_; rtc::Event bitrate_changed_event_; Mutex mutex_; uint32_t target_bitrate_ RTC_GUARDED_BY(&mutex_); int num_rate_allocator_creations_; int num_encoder_initializations_; webrtc::Call* call_; webrtc::VideoSendStream* send_stream_; test::VideoEncoderProxyFactory encoder_factory_; std::unique_ptr bitrate_allocator_factory_; webrtc::VideoEncoderConfig encoder_config_; } test(task_queue()); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, ReportsSentResolution) { static const size_t kNumStreams = 3; // Unusual resolutions to make sure that they are the ones being reported. static const struct { int width; int height; } kEncodedResolution[kNumStreams] = {{241, 181}, {300, 121}, {121, 221}}; class ScreencastTargetBitrateTest : public test::SendTest, public test::FakeEncoder { public: explicit ScreencastTargetBitrateTest(TaskQueueBase* task_queue) : SendTest(kDefaultTimeout), test::FakeEncoder(Clock::GetRealTimeClock()), send_stream_(nullptr), encoder_factory_(this), task_queue_(task_queue) {} private: int32_t Encode(const VideoFrame& input_image, const std::vector* frame_types) override { CodecSpecificInfo specifics; specifics.codecType = kVideoCodecGeneric; EncodedImage encoded; auto buffer = EncodedImageBuffer::Create(16); memset(buffer->data(), 0, 16); encoded.SetEncodedData(buffer); encoded.SetTimestamp(input_image.timestamp()); encoded.capture_time_ms_ = input_image.render_time_ms(); for (size_t i = 0; i < kNumStreams; ++i) { encoded._frameType = (*frame_types)[i]; encoded._encodedWidth = kEncodedResolution[i].width; encoded._encodedHeight = kEncodedResolution[i].height; encoded.SetSpatialIndex(i); EncodedImageCallback* callback; { MutexLock lock(&mutex_); callback = callback_; } RTC_DCHECK(callback); if (callback->OnEncodedImage(encoded, &specifics).error != EncodedImageCallback::Result::OK) { return -1; } } observation_complete_.Set(); return 0; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; EXPECT_EQ(kNumStreams, encoder_config->number_of_streams); } size_t GetNumVideoStreams() const override { return kNumStreams; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for the encoder to send one frame."; VideoSendStream::Stats stats; SendTask(task_queue_, [&]() { stats = send_stream_->GetStats(); }); for (size_t i = 0; i < kNumStreams; ++i) { ASSERT_TRUE(stats.substreams.find(kVideoSendSsrcs[i]) != stats.substreams.end()) << "No stats for SSRC: " << kVideoSendSsrcs[i] << ", stats should exist as soon as frames have been encoded."; VideoSendStream::StreamStats ssrc_stats = stats.substreams[kVideoSendSsrcs[i]]; EXPECT_EQ(kEncodedResolution[i].width, ssrc_stats.width); EXPECT_EQ(kEncodedResolution[i].height, ssrc_stats.height); } } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } VideoSendStream* send_stream_; test::VideoEncoderProxyFactory encoder_factory_; TaskQueueBase* const task_queue_; } test(task_queue()); RunBaseTest(&test); } #if defined(RTC_ENABLE_VP9) class Vp9HeaderObserver : public test::SendTest { public: explicit Vp9HeaderObserver(const Vp9TestParams& params) : SendTest(VideoSendStreamTest::kLongTimeout), encoder_factory_([]() { return VP9Encoder::Create(); }), params_(params), vp9_settings_(VideoEncoder::GetDefaultVp9Settings()) {} virtual void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) {} virtual void InspectHeader(const RTPVideoHeaderVP9& vp9) = 0; private: const int kVp9PayloadType = test::CallTest::kVideoSendPayloadType; void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; send_config->rtp.payload_name = "VP9"; send_config->rtp.payload_type = kVp9PayloadType; ModifyVideoConfigsHook(send_config, receive_configs, encoder_config); encoder_config->encoder_specific_settings = rtc::make_ref_counted( vp9_settings_); EXPECT_EQ(1u, encoder_config->number_of_streams); EXPECT_EQ(1u, encoder_config->simulcast_layers.size()); encoder_config_ = encoder_config->Copy(); } void ModifyVideoCaptureStartResolution(int* width, int* height, int* frame_rate) override { expected_width_ = *width; expected_height_ = *height; } void PerformTest() override { bool wait = Wait(); { // In case of time out, OnSendRtp might still access frames_sent_; MutexLock lock(&mutex_); EXPECT_TRUE(wait) << "Test timed out waiting for VP9 packet, num frames " << frames_sent_; } } Action OnSendRtp(const uint8_t* packet, size_t length) override { RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); EXPECT_EQ(kVp9PayloadType, rtp_packet.PayloadType()); rtc::ArrayView rtp_payload = rtp_packet.payload(); bool new_packet = !last_packet_sequence_number_.has_value() || IsNewerSequenceNumber(rtp_packet.SequenceNumber(), *last_packet_sequence_number_); if (!rtp_payload.empty() && new_packet) { RTPVideoHeader video_header; EXPECT_NE( VideoRtpDepacketizerVp9::ParseRtpPayload(rtp_payload, &video_header), 0); EXPECT_EQ(VideoCodecType::kVideoCodecVP9, video_header.codec); // Verify common fields for all configurations. const auto& vp9_header = absl::get(video_header.video_type_header); VerifyCommonHeader(vp9_header); CompareConsecutiveFrames(rtp_packet, video_header); // Verify configuration specific settings. InspectHeader(vp9_header); if (rtp_packet.Marker()) { MutexLock lock(&mutex_); ++frames_sent_; } last_packet_marker_ = rtp_packet.Marker(); last_packet_sequence_number_ = rtp_packet.SequenceNumber(); last_packet_timestamp_ = rtp_packet.Timestamp(); last_vp9_ = vp9_header; last_temporal_idx_by_spatial_idx_[vp9_header.spatial_idx] = vp9_header.temporal_idx; } return SEND_PACKET; } protected: bool ContinuousPictureId(const RTPVideoHeaderVP9& vp9) const { if (last_vp9_.picture_id > vp9.picture_id) { return vp9.picture_id == 0; // Wrap. } else { return vp9.picture_id == last_vp9_.picture_id + 1; } } bool IsTemporalShiftEnabled() const { return params_.scalability_mode.find("_SHIFT") != std::string::npos; } void VerifySpatialIdxWithinFrame(const RTPVideoHeaderVP9& vp9) const { bool new_layer = vp9.spatial_idx != last_vp9_.spatial_idx; EXPECT_EQ(new_layer, vp9.beginning_of_frame); EXPECT_EQ(new_layer, last_vp9_.end_of_frame); EXPECT_EQ(new_layer ? last_vp9_.spatial_idx + 1 : last_vp9_.spatial_idx, vp9.spatial_idx); } void VerifyTemporalIdxWithinFrame(const RTPVideoHeaderVP9& vp9) const { if (!IsTemporalShiftEnabled()) { EXPECT_EQ(vp9.temporal_idx, last_vp9_.temporal_idx); return; } // Temporal shift. EXPECT_EQ(params_.num_temporal_layers, 2); if (vp9.spatial_idx == params_.num_spatial_layers - 1) { // Lower spatial layers should be shifted. int expected_tid = (!vp9.inter_pic_predicted || vp9.temporal_idx == 1) ? 0 : 1; for (int i = 0; i < vp9.spatial_idx; ++i) { EXPECT_EQ(last_temporal_idx_by_spatial_idx_.at(i), expected_tid); } } // Same within spatial layer. bool new_layer = vp9.spatial_idx != last_vp9_.spatial_idx; if (!new_layer) { EXPECT_EQ(vp9.temporal_idx, last_vp9_.temporal_idx); } } void VerifyFixedTemporalLayerStructure(const RTPVideoHeaderVP9& vp9, uint8_t num_layers) const { switch (num_layers) { case 0: VerifyTemporalLayerStructure0(vp9); break; case 1: VerifyTemporalLayerStructure1(vp9); break; case 2: VerifyTemporalLayerStructure2(vp9); break; case 3: VerifyTemporalLayerStructure3(vp9); break; default: RTC_DCHECK_NOTREACHED(); } } void VerifyTemporalLayerStructure0(const RTPVideoHeaderVP9& vp9) const { EXPECT_EQ(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_EQ(kNoTemporalIdx, vp9.temporal_idx); // no tid // Technically true, but layer indices not available. EXPECT_FALSE(vp9.temporal_up_switch); } void VerifyTemporalLayerStructure1(const RTPVideoHeaderVP9& vp9) const { EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_EQ(0, vp9.temporal_idx); // 0,0,0,... } void VerifyTemporalLayerStructure2(const RTPVideoHeaderVP9& vp9) const { EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_GE(vp9.temporal_idx, 0); // 0,1,0,1,... (tid reset on I-frames). EXPECT_LE(vp9.temporal_idx, 1); EXPECT_TRUE(vp9.temporal_up_switch); // Verify temporal structure for the highest spatial layer (the structure // may be shifted for lower spatial layer if temporal shift is configured). if (IsHighestSpatialLayer(vp9) && vp9.beginning_of_frame) { int expected_tid = (!vp9.inter_pic_predicted || last_temporal_idx_by_spatial_idx_.at(vp9.spatial_idx) == 1) ? 0 : 1; EXPECT_EQ(vp9.temporal_idx, expected_tid); } } void VerifyTemporalLayerStructure3(const RTPVideoHeaderVP9& vp9) const { EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx); EXPECT_GE(vp9.temporal_idx, 0); // 0,2,1,2,... (tid reset on I-frames). EXPECT_LE(vp9.temporal_idx, 2); if (IsNewPictureId(vp9) && vp9.inter_pic_predicted) { EXPECT_NE(vp9.temporal_idx, last_vp9_.temporal_idx); EXPECT_TRUE(vp9.temporal_up_switch); switch (vp9.temporal_idx) { case 0: EXPECT_EQ(last_vp9_.temporal_idx, 2); break; case 1: EXPECT_EQ(last_vp9_.temporal_idx, 2); break; case 2: EXPECT_LT(last_vp9_.temporal_idx, 2); break; } } } void VerifyTl0Idx(const RTPVideoHeaderVP9& vp9) const { if (vp9.tl0_pic_idx == kNoTl0PicIdx) return; uint8_t expected_tl0_idx = last_vp9_.tl0_pic_idx; if (vp9.temporal_idx == 0) ++expected_tl0_idx; EXPECT_EQ(expected_tl0_idx, vp9.tl0_pic_idx); } bool IsNewPictureId(const RTPVideoHeaderVP9& vp9) const { return frames_sent_ > 0 && (vp9.picture_id != last_vp9_.picture_id); } bool IsHighestSpatialLayer(const RTPVideoHeaderVP9& vp9) const { return vp9.spatial_idx == params_.num_spatial_layers - 1 || vp9.spatial_idx == kNoSpatialIdx; } // Flexible mode (F=1): Non-flexible mode (F=0): // // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // |I|P|L|F|B|E|V|-| |I|P|L|F|B|E|V|-| // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // I: |M| PICTURE ID | I: |M| PICTURE ID | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // M: | EXTENDED PID | M: | EXTENDED PID | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // L: | T |U| S |D| L: | T |U| S |D| // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // P,F: | P_DIFF |X|N| | TL0PICIDX | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // X: |EXTENDED P_DIFF| V: | SS .. | // +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ // V: | SS .. | // +-+-+-+-+-+-+-+-+ void VerifyCommonHeader(const RTPVideoHeaderVP9& vp9) const { EXPECT_EQ(kMaxTwoBytePictureId, vp9.max_picture_id); // M:1 EXPECT_NE(kNoPictureId, vp9.picture_id); // I:1 EXPECT_EQ(vp9_settings_.flexibleMode, vp9.flexible_mode); // F if (params_.num_spatial_layers > 1) { EXPECT_LT(vp9.spatial_idx, params_.num_spatial_layers); } else if (params_.num_temporal_layers > 1) { EXPECT_EQ(vp9.spatial_idx, 0); } else { EXPECT_EQ(vp9.spatial_idx, kNoSpatialIdx); } if (params_.num_temporal_layers > 1) { EXPECT_LT(vp9.temporal_idx, params_.num_temporal_layers); } else if (params_.num_spatial_layers > 1) { EXPECT_EQ(vp9.temporal_idx, 0); } else { EXPECT_EQ(vp9.temporal_idx, kNoTemporalIdx); } if (vp9.ss_data_available) // V VerifySsData(vp9); if (frames_sent_ == 0) EXPECT_FALSE(vp9.inter_pic_predicted); // P if (!vp9.inter_pic_predicted) { if (vp9.temporal_idx == kNoTemporalIdx) { EXPECT_FALSE(vp9.temporal_up_switch); } else { EXPECT_EQ(vp9.temporal_idx, 0); EXPECT_TRUE(vp9.temporal_up_switch); } } } // Scalability structure (SS). // // +-+-+-+-+-+-+-+-+ // V: | N_S |Y|G|-|-|-| // +-+-+-+-+-+-+-+-+ // Y: | WIDTH | N_S + 1 times // +-+-+-+-+-+-+-+-+ // | HEIGHT | // +-+-+-+-+-+-+-+-+ // G: | N_G | // +-+-+-+-+-+-+-+-+ // N_G: | T |U| R |-|-| N_G times // +-+-+-+-+-+-+-+-+ // | P_DIFF | R times // +-+-+-+-+-+-+-+-+ void VerifySsData(const RTPVideoHeaderVP9& vp9) const { EXPECT_TRUE(vp9.ss_data_available); // V EXPECT_EQ(params_.num_spatial_layers, // N_S + 1 vp9.num_spatial_layers); EXPECT_TRUE(vp9.spatial_layer_resolution_present); // Y:1 ScalableVideoController::StreamLayersConfig config = GetScalabilityConfig(); for (int i = config.num_spatial_layers - 1; i >= 0; --i) { double ratio = static_cast(config.scaling_factor_num[i]) / config.scaling_factor_den[i]; EXPECT_EQ(expected_width_ * ratio, vp9.width[i]); // WIDTH EXPECT_EQ(expected_height_ * ratio, vp9.height[i]); // HEIGHT } } void CompareConsecutiveFrames(const RtpPacket& rtp_packet, const RTPVideoHeader& video) const { const auto& vp9_header = absl::get(video.video_type_header); const bool new_temporal_unit = !last_packet_timestamp_.has_value() || IsNewerTimestamp(rtp_packet.Timestamp(), *last_packet_timestamp_); const bool new_frame = new_temporal_unit || last_vp9_.spatial_idx != vp9_header.spatial_idx; EXPECT_EQ(new_frame, video.is_first_packet_in_frame); if (!new_temporal_unit) { EXPECT_FALSE(last_packet_marker_); EXPECT_EQ(*last_packet_timestamp_, rtp_packet.Timestamp()); EXPECT_EQ(last_vp9_.picture_id, vp9_header.picture_id); EXPECT_EQ(last_vp9_.tl0_pic_idx, vp9_header.tl0_pic_idx); VerifySpatialIdxWithinFrame(vp9_header); VerifyTemporalIdxWithinFrame(vp9_header); return; } // New frame. EXPECT_TRUE(vp9_header.beginning_of_frame); // Compare with last packet in previous frame. if (frames_sent_ == 0) return; EXPECT_TRUE(last_vp9_.end_of_frame); EXPECT_TRUE(last_packet_marker_); EXPECT_TRUE(ContinuousPictureId(vp9_header)); VerifyTl0Idx(vp9_header); } ScalableVideoController::StreamLayersConfig GetScalabilityConfig() const { absl::optional scalability_mode = ScalabilityModeFromString(params_.scalability_mode); EXPECT_TRUE(scalability_mode.has_value()); absl::optional config = ScalabilityStructureConfig(*scalability_mode); EXPECT_TRUE(config.has_value()); EXPECT_EQ(config->num_spatial_layers, params_.num_spatial_layers); return *config; } test::FunctionVideoEncoderFactory encoder_factory_; const Vp9TestParams params_; VideoCodecVP9 vp9_settings_; webrtc::VideoEncoderConfig encoder_config_; bool last_packet_marker_ = false; absl::optional last_packet_sequence_number_; absl::optional last_packet_timestamp_; RTPVideoHeaderVP9 last_vp9_; std::map last_temporal_idx_by_spatial_idx_; Mutex mutex_; size_t frames_sent_ = 0; int expected_width_ = 0; int expected_height_ = 0; }; class Vp9Test : public VideoSendStreamTest, public ::testing::WithParamInterface { public: Vp9Test() : params_(::testing::get(GetParam())), use_scalability_mode_identifier_(::testing::get(GetParam())) {} protected: const Vp9TestParams params_; const bool use_scalability_mode_identifier_; }; INSTANTIATE_TEST_SUITE_P( ScalabilityMode, Vp9Test, ::testing::Combine( ::testing::ValuesIn( {{"L1T1", 1, 1, InterLayerPredMode::kOn}, {"L1T2", 1, 2, InterLayerPredMode::kOn}, {"L1T3", 1, 3, InterLayerPredMode::kOn}, {"L2T1", 2, 1, InterLayerPredMode::kOn}, {"L2T1_KEY", 2, 1, InterLayerPredMode::kOnKeyPic}, {"L2T2", 2, 2, InterLayerPredMode::kOn}, {"L2T2_KEY", 2, 2, InterLayerPredMode::kOnKeyPic}, {"L2T3", 2, 3, InterLayerPredMode::kOn}, {"L2T3_KEY", 2, 3, InterLayerPredMode::kOnKeyPic}, {"L3T1", 3, 1, InterLayerPredMode::kOn}, {"L3T1_KEY", 3, 1, InterLayerPredMode::kOnKeyPic}, {"L3T2", 3, 2, InterLayerPredMode::kOn}, {"L3T2_KEY", 3, 2, InterLayerPredMode::kOnKeyPic}, {"L3T3", 3, 3, InterLayerPredMode::kOn}, {"L3T3_KEY", 3, 3, InterLayerPredMode::kOnKeyPic}, {"S2T1", 2, 1, InterLayerPredMode::kOff}, {"S2T2", 2, 2, InterLayerPredMode::kOff}, {"S2T3", 2, 3, InterLayerPredMode::kOff}, {"S3T1", 3, 1, InterLayerPredMode::kOff}, {"S3T2", 3, 2, InterLayerPredMode::kOff}, {"S3T3", 3, 3, InterLayerPredMode::kOff}}), ::testing::Values(false, true)), // use_scalability_mode_identifier ParamInfoToStr); INSTANTIATE_TEST_SUITE_P( ScalabilityModeOn, Vp9Test, ::testing::Combine( ::testing::ValuesIn( {{"L2T1h", 2, 1, InterLayerPredMode::kOn}, {"L2T2h", 2, 2, InterLayerPredMode::kOn}, {"L2T3h", 2, 3, InterLayerPredMode::kOn}, {"L2T2_KEY_SHIFT", 2, 2, InterLayerPredMode::kOnKeyPic}, {"L3T1h", 3, 1, InterLayerPredMode::kOn}, {"L3T2h", 3, 2, InterLayerPredMode::kOn}, {"L3T3h", 3, 3, InterLayerPredMode::kOn}, {"S2T1h", 2, 1, InterLayerPredMode::kOff}, {"S2T2h", 2, 2, InterLayerPredMode::kOff}, {"S2T3h", 2, 3, InterLayerPredMode::kOff}, {"S3T1h", 3, 1, InterLayerPredMode::kOff}, {"S3T2h", 3, 2, InterLayerPredMode::kOff}, {"S3T3h", 3, 3, InterLayerPredMode::kOff}}), ::testing::Values(true)), // use_scalability_mode_identifier ParamInfoToStr); TEST_P(Vp9Test, NonFlexMode) { TestVp9NonFlexMode(params_, use_scalability_mode_identifier_); } void VideoSendStreamTest::TestVp9NonFlexMode( const Vp9TestParams& params, bool use_scalability_mode_identifier) { static const size_t kNumFramesToSend = 100; // Set to < kNumFramesToSend and coprime to length of temporal layer // structures to verify temporal id reset on key frame. static const int kKeyFrameInterval = 31; static const int kWidth = kMinVp9SpatialLayerLongSideLength; static const int kHeight = kMinVp9SpatialLayerShortSideLength; static const float kGoodBitsPerPixel = 0.1f; class NonFlexibleMode : public Vp9HeaderObserver { public: NonFlexibleMode(const Vp9TestParams& params, bool use_scalability_mode_identifier) : Vp9HeaderObserver(params), use_scalability_mode_identifier_(use_scalability_mode_identifier), l_field_(params.num_temporal_layers > 1 || params.num_spatial_layers > 1) {} void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { encoder_config->codec_type = kVideoCodecVP9; int bitrate_bps = 0; for (int sl_idx = 0; sl_idx < params_.num_spatial_layers; ++sl_idx) { const int width = kWidth << sl_idx; const int height = kHeight << sl_idx; const float bpp = kGoodBitsPerPixel / (1 << sl_idx); bitrate_bps += static_cast(width * height * bpp * 30); } encoder_config->max_bitrate_bps = bitrate_bps * 2; encoder_config->frame_drop_enabled = false; vp9_settings_.flexibleMode = false; vp9_settings_.automaticResizeOn = false; vp9_settings_.keyFrameInterval = kKeyFrameInterval; if (!use_scalability_mode_identifier_) { vp9_settings_.numberOfTemporalLayers = params_.num_temporal_layers; vp9_settings_.numberOfSpatialLayers = params_.num_spatial_layers; vp9_settings_.interLayerPred = params_.inter_layer_pred; } else { absl::optional mode = ScalabilityModeFromString(params_.scalability_mode); encoder_config->simulcast_layers[0].scalability_mode = mode; EXPECT_TRUE(mode.has_value()); } } int GetRequiredDivisibility() const { ScalableVideoController::StreamLayersConfig config = GetScalabilityConfig(); int required_divisibility = 1; for (int sl_idx = 0; sl_idx < config.num_spatial_layers; ++sl_idx) { required_divisibility = cricket::LeastCommonMultiple( required_divisibility, config.scaling_factor_den[sl_idx]); } return required_divisibility; } void ModifyVideoCaptureStartResolution(int* width, int* height, int* frame_rate) override { expected_width_ = kWidth << (params_.num_spatial_layers - 1); expected_height_ = kHeight << (params_.num_spatial_layers - 1); *width = expected_width_; *height = expected_height_; // Top layer may be adjusted to ensure evenly divided layers. int divisibility = GetRequiredDivisibility(); expected_width_ -= (expected_width_ % divisibility); expected_height_ -= (expected_height_ % divisibility); } void InspectHeader(const RTPVideoHeaderVP9& vp9) override { bool ss_data_expected = !vp9.inter_pic_predicted && vp9.beginning_of_frame && !vp9.inter_layer_predicted; EXPECT_EQ(ss_data_expected, vp9.ss_data_available); bool is_key_frame = frames_sent_ % kKeyFrameInterval == 0; if (params_.num_spatial_layers > 1) { switch (params_.inter_layer_pred) { case InterLayerPredMode::kOff: EXPECT_FALSE(vp9.inter_layer_predicted); break; case InterLayerPredMode::kOn: EXPECT_EQ(vp9.spatial_idx > 0, vp9.inter_layer_predicted); break; case InterLayerPredMode::kOnKeyPic: EXPECT_EQ(is_key_frame && vp9.spatial_idx > 0, vp9.inter_layer_predicted); break; } } else { EXPECT_FALSE(vp9.inter_layer_predicted); } EXPECT_EQ(is_key_frame, !vp9.inter_pic_predicted); if (IsNewPictureId(vp9)) { if (params_.num_temporal_layers == 1 && params_.num_spatial_layers == 1) { EXPECT_EQ(kNoSpatialIdx, vp9.spatial_idx); } else { EXPECT_EQ(0, vp9.spatial_idx); } if (params_.num_spatial_layers > 1) EXPECT_EQ(params_.num_spatial_layers - 1, last_vp9_.spatial_idx); } VerifyFixedTemporalLayerStructure( vp9, l_field_ ? params_.num_temporal_layers : 0); if (frames_sent_ > kNumFramesToSend) observation_complete_.Set(); } const bool use_scalability_mode_identifier_; const bool l_field_; private: void ModifySenderBitrateConfig( BitrateConstraints* bitrate_config) override { const int kBitrateBps = 800000; bitrate_config->min_bitrate_bps = kBitrateBps; bitrate_config->start_bitrate_bps = kBitrateBps; } } test(params, use_scalability_mode_identifier); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, Vp9NonFlexModeSmallResolution) { static const size_t kNumFramesToSend = 50; static const int kWidth = 4; static const int kHeight = 4; class NonFlexibleModeResolution : public Vp9HeaderObserver { public: explicit NonFlexibleModeResolution(const Vp9TestParams& params) : Vp9HeaderObserver(params) {} private: void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { encoder_config->codec_type = kVideoCodecVP9; vp9_settings_.flexibleMode = false; vp9_settings_.numberOfTemporalLayers = params_.num_temporal_layers; vp9_settings_.numberOfSpatialLayers = params_.num_spatial_layers; vp9_settings_.interLayerPred = params_.inter_layer_pred; } void InspectHeader(const RTPVideoHeaderVP9& vp9_header) override { if (frames_sent_ > kNumFramesToSend) observation_complete_.Set(); } void ModifyVideoCaptureStartResolution(int* width, int* height, int* frame_rate) override { expected_width_ = kWidth; expected_height_ = kHeight; *width = kWidth; *height = kHeight; } }; Vp9TestParams params{"L1T1", 1, 1, InterLayerPredMode::kOn}; NonFlexibleModeResolution test(params); RunBaseTest(&test); } #if defined(WEBRTC_ANDROID) // Crashes on Android; bugs.webrtc.org/7401 #define MAYBE_Vp9FlexModeRefCount DISABLED_Vp9FlexModeRefCount #else // TODO(webrtc:9270): Support of flexible mode is temporarily disabled. Enable // the test after webrtc:9270 is implemented. #define MAYBE_Vp9FlexModeRefCount DISABLED_Vp9FlexModeRefCount // #define MAYBE_Vp9FlexModeRefCount Vp9FlexModeRefCount #endif TEST_F(VideoSendStreamTest, MAYBE_Vp9FlexModeRefCount) { class FlexibleMode : public Vp9HeaderObserver { public: explicit FlexibleMode(const Vp9TestParams& params) : Vp9HeaderObserver(params) {} private: void ModifyVideoConfigsHook( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { encoder_config->codec_type = kVideoCodecVP9; encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; vp9_settings_.flexibleMode = true; vp9_settings_.numberOfTemporalLayers = params_.num_temporal_layers; vp9_settings_.numberOfSpatialLayers = params_.num_spatial_layers; vp9_settings_.interLayerPred = params_.inter_layer_pred; } void InspectHeader(const RTPVideoHeaderVP9& vp9_header) override { EXPECT_TRUE(vp9_header.flexible_mode); EXPECT_EQ(kNoTl0PicIdx, vp9_header.tl0_pic_idx); if (vp9_header.inter_pic_predicted) { EXPECT_GT(vp9_header.num_ref_pics, 0u); observation_complete_.Set(); } } }; Vp9TestParams params{"L2T1", 2, 1, InterLayerPredMode::kOn}; FlexibleMode test(params); RunBaseTest(&test); } #endif // defined(RTC_ENABLE_VP9) void VideoSendStreamTest::TestRequestSourceRotateVideo( bool support_orientation_ext) { CreateSenderCall(); test::NullTransport transport; CreateSendConfig(1, 0, 0, &transport); GetVideoSendConfig()->rtp.extensions.clear(); if (support_orientation_ext) { GetVideoSendConfig()->rtp.extensions.push_back( RtpExtension(RtpExtension::kVideoRotationUri, 1)); } CreateVideoStreams(); test::FrameForwarder forwarder; GetVideoSendStream()->SetSource(&forwarder, DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_TRUE(forwarder.sink_wants().rotation_applied != support_orientation_ext); DestroyStreams(); } TEST_F(VideoSendStreamTest, RequestSourceRotateIfVideoOrientationExtensionNotSupported) { TestRequestSourceRotateVideo(false); } TEST_F(VideoSendStreamTest, DoNotRequestsRotationIfVideoOrientationExtensionSupported) { TestRequestSourceRotateVideo(true); } TEST_F(VideoSendStreamTest, EncoderConfigMaxFramerateReportedToSource) { static const int kMaxFps = 22; class FpsObserver : public test::SendTest, public test::FrameGeneratorCapturer::SinkWantsObserver { public: FpsObserver() : SendTest(kDefaultTimeout) {} void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { frame_generator_capturer->SetSinkWantsObserver(this); } void OnSinkWantsChanged(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override { if (wants.max_framerate_fps == kMaxFps) observation_complete_.Set(); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { encoder_config->simulcast_layers[0].max_framerate = kMaxFps; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for fps to be reported."; } } test; RunBaseTest(&test); } // This test verifies that overhead is removed from the bandwidth estimate by // testing that the maximum possible target payload rate is smaller than the // maximum bandwidth estimate by the overhead rate. TEST_F(VideoSendStreamTest, RemoveOverheadFromBandwidth) { class RemoveOverheadFromBandwidthTest : public test::EndToEndTest, public test::FakeEncoder { public: explicit RemoveOverheadFromBandwidthTest(TaskQueueBase* task_queue) : EndToEndTest(test::CallTest::kDefaultTimeout), FakeEncoder(Clock::GetRealTimeClock()), task_queue_(task_queue), encoder_factory_(this), call_(nullptr), max_bitrate_bps_(0), first_packet_sent_(false) {} void SetRates(const RateControlParameters& parameters) override { MutexLock lock(&mutex_); // Wait for the first sent packet so that videosendstream knows // rtp_overhead. if (first_packet_sent_) { max_bitrate_bps_ = parameters.bitrate.get_sum_bps(); bitrate_changed_event_.Set(); } return FakeEncoder::SetRates(parameters); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { call_ = sender_call; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->rtp.max_packet_size = 1200; send_config->encoder_settings.encoder_factory = &encoder_factory_; EXPECT_FALSE(send_config->rtp.extensions.empty()); } Action OnSendRtp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); first_packet_sent_ = true; return SEND_PACKET; } void PerformTest() override { BitrateConstraints bitrate_config; constexpr int kStartBitrateBps = 60000; constexpr int kMaxBitrateBps = 60000; constexpr int kMinBitrateBps = 10000; bitrate_config.start_bitrate_bps = kStartBitrateBps; bitrate_config.max_bitrate_bps = kMaxBitrateBps; bitrate_config.min_bitrate_bps = kMinBitrateBps; SendTask(task_queue_, [this, &bitrate_config]() { call_->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); call_->GetTransportControllerSend()->OnTransportOverheadChanged(40); }); // At a bitrate of 60kbps with a packet size of 1200B video and an // overhead of 40B per packet video produces 2240bps overhead. // So the encoder BW should be set to 57760bps. EXPECT_TRUE( bitrate_changed_event_.Wait(VideoSendStreamTest::kDefaultTimeout)); { MutexLock lock(&mutex_); EXPECT_LE(max_bitrate_bps_, 57760u); } } private: TaskQueueBase* const task_queue_; test::VideoEncoderProxyFactory encoder_factory_; Call* call_; Mutex mutex_; uint32_t max_bitrate_bps_ RTC_GUARDED_BY(&mutex_); bool first_packet_sent_ RTC_GUARDED_BY(&mutex_); rtc::Event bitrate_changed_event_; } test(task_queue()); RunBaseTest(&test); } class PacingFactorObserver : public test::SendTest { public: PacingFactorObserver(bool configure_send_side, absl::optional expected_pacing_factor) : test::SendTest(VideoSendStreamTest::kDefaultTimeout), configure_send_side_(configure_send_side), expected_pacing_factor_(expected_pacing_factor) {} void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { // Check if send-side bwe extension is already present, and remove it if // it is not desired. bool has_send_side = false; for (auto it = send_config->rtp.extensions.begin(); it != send_config->rtp.extensions.end(); ++it) { if (it->uri == RtpExtension::kTransportSequenceNumberUri) { if (configure_send_side_) { has_send_side = true; } else { send_config->rtp.extensions.erase(it); } break; } } if (configure_send_side_ && !has_send_side) { rtc::UniqueNumberGenerator unique_id_generator; unique_id_generator.AddKnownId(0); // First valid RTP extension ID is 1. for (const RtpExtension& extension : send_config->rtp.extensions) { unique_id_generator.AddKnownId(extension.id); } // Want send side, not present by default, so add it. send_config->rtp.extensions.emplace_back( RtpExtension::kTransportSequenceNumberUri, unique_id_generator()); } // ALR only enabled for screenshare. encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen; } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { auto internal_send_peer = test::VideoSendStreamPeer(send_stream); // Video streams created, check that pacing factor is correctly configured. EXPECT_EQ(expected_pacing_factor_, internal_send_peer.GetPacingFactorOverride()); observation_complete_.Set(); } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for stream creation."; } private: const bool configure_send_side_; const absl::optional expected_pacing_factor_; }; std::string GetAlrProbingExperimentString() { return std::string( AlrExperimentSettings::kScreenshareProbingBweExperimentName) + "/1.0,2875,80,40,-60,3/"; } const float kAlrProbingExperimentPaceMultiplier = 1.0f; TEST_F(VideoSendStreamTest, AlrConfiguredWhenSendSideOn) { test::ScopedFieldTrials alr_experiment(GetAlrProbingExperimentString()); // Send-side bwe on, use pacing factor from `kAlrProbingExperiment` above. PacingFactorObserver test_with_send_side(true, kAlrProbingExperimentPaceMultiplier); RunBaseTest(&test_with_send_side); } TEST_F(VideoSendStreamTest, AlrNotConfiguredWhenSendSideOff) { test::ScopedFieldTrials alr_experiment(GetAlrProbingExperimentString()); // Send-side bwe off, use configuration should not be overridden. PacingFactorObserver test_without_send_side(false, absl::nullopt); RunBaseTest(&test_without_send_side); } // Test class takes as argument a function pointer to reset the send // stream and call OnVideoStreamsCreated. This is necessary since you cannot // change the content type of a VideoSendStream, you need to recreate it. // Stopping and recreating the stream can only be done on the main thread and in // the context of VideoSendStreamTest (not BaseTest). The test switches from // realtime to screenshare and back. template class ContentSwitchTest : public test::SendTest { public: enum class StreamState { kBeforeSwitch = 0, kInScreenshare = 1, kAfterSwitchBack = 2, }; static const uint32_t kMinPacketsToSend = 50; explicit ContentSwitchTest(T* stream_reset_fun, TaskQueueBase* task_queue) : SendTest(test::CallTest::kDefaultTimeout), call_(nullptr), state_(StreamState::kBeforeSwitch), send_stream_(nullptr), send_stream_config_(nullptr), packets_sent_(0), stream_resetter_(stream_reset_fun), task_queue_(task_queue) { RTC_DCHECK(stream_resetter_); } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { MutexLock lock(&mutex_); send_stream_ = send_stream; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { RTC_DCHECK_EQ(1, encoder_config->number_of_streams); encoder_config->min_transmit_bitrate_bps = 0; encoder_config->content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; send_stream_config_ = send_config->Copy(); encoder_config_ = encoder_config->Copy(); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { call_ = sender_call; } void OnStreamsStopped() override { MutexLock lock(&mutex_); done_ = true; } Action OnSendRtp(const uint8_t* packet, size_t length) override { task_queue_->PostTask([this]() { MutexLock lock(&mutex_); if (done_) return; auto internal_send_peer = test::VideoSendStreamPeer(send_stream_); float pacing_factor = internal_send_peer.GetPacingFactorOverride().value_or(0.0f); float expected_pacing_factor = 1.1; // Strict pacing factor. VideoSendStream::Stats stats = send_stream_->GetStats(); if (stats.content_type == webrtc::VideoContentType::SCREENSHARE) { expected_pacing_factor = 1.0f; // Currently used pacing factor in ALR. } EXPECT_NEAR(expected_pacing_factor, pacing_factor, 1e-6); // Wait until at least kMinPacketsToSend packets to be sent, so that // some frames would be encoded. if (++packets_sent_ < kMinPacketsToSend) return; if (state_ != StreamState::kAfterSwitchBack) { // We've sent kMinPacketsToSend packets, switch the content type and // move move to the next state. Note that we need to recreate the stream // if changing content type. packets_sent_ = 0; if (encoder_config_.content_type == VideoEncoderConfig::ContentType::kRealtimeVideo) { encoder_config_.content_type = VideoEncoderConfig::ContentType::kScreen; } else { encoder_config_.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; } switch (state_) { case StreamState::kBeforeSwitch: state_ = StreamState::kInScreenshare; break; case StreamState::kInScreenshare: state_ = StreamState::kAfterSwitchBack; break; case StreamState::kAfterSwitchBack: RTC_DCHECK_NOTREACHED(); break; } content_switch_event_.Set(); return; } observation_complete_.Set(); }); return SEND_PACKET; } void PerformTest() override { while (GetStreamState() != StreamState::kAfterSwitchBack) { ASSERT_TRUE(content_switch_event_.Wait(test::CallTest::kDefaultTimeout)); (*stream_resetter_)(send_stream_config_, encoder_config_, this); } ASSERT_TRUE(Wait()) << "Timed out waiting for a frame sent after switch back"; } private: StreamState GetStreamState() { MutexLock lock(&mutex_); return state_; } Mutex mutex_; rtc::Event content_switch_event_; Call* call_; bool done_ RTC_GUARDED_BY(mutex_) = false; StreamState state_ RTC_GUARDED_BY(mutex_); VideoSendStream* send_stream_ RTC_GUARDED_BY(mutex_); VideoSendStream::Config send_stream_config_; VideoEncoderConfig encoder_config_; uint32_t packets_sent_ RTC_GUARDED_BY(mutex_); T* stream_resetter_; TaskQueueBase* task_queue_; }; TEST_F(VideoSendStreamTest, SwitchesToScreenshareAndBack) { auto reset_fun = [this](const VideoSendStream::Config& send_stream_config, const VideoEncoderConfig& encoder_config, test::BaseTest* test) { SendTask(task_queue(), [this, &send_stream_config, &encoder_config, &test]() { Stop(); DestroyVideoSendStreams(); SetVideoSendConfig(send_stream_config); SetVideoEncoderConfig(encoder_config); CreateVideoSendStreams(); SetVideoDegradation(DegradationPreference::MAINTAIN_RESOLUTION); test->OnVideoStreamsCreated(GetVideoSendStream(), video_receive_streams_); Start(); }); }; ContentSwitchTest test(&reset_fun, task_queue()); RunBaseTest(&test); } void VideoSendStreamTest::TestTemporalLayers( VideoEncoderFactory* encoder_factory, const std::string& payload_name, const std::vector& num_temporal_layers, const std::vector& scalability_mode) { static constexpr int kMaxBitrateBps = 1000000; static constexpr int kMinFramesToObservePerStream = 8; class TemporalLayerObserver : public test::EndToEndTest, public test::FrameGeneratorCapturer::SinkWantsObserver { public: TemporalLayerObserver(VideoEncoderFactory* encoder_factory, const std::string& payload_name, const std::vector& num_temporal_layers, const std::vector& scalability_mode) : EndToEndTest(kDefaultTimeout), encoder_factory_(encoder_factory), payload_name_(payload_name), num_temporal_layers_(num_temporal_layers), scalability_mode_(scalability_mode), depacketizer_(CreateVideoRtpDepacketizer( PayloadStringToCodecType(payload_name))) {} private: void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { frame_generator_capturer->ChangeResolution(640, 360); } void OnSinkWantsChanged(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override {} void ModifySenderBitrateConfig( BitrateConstraints* bitrate_config) override { bitrate_config->start_bitrate_bps = kMaxBitrateBps / 2; } size_t GetNumVideoStreams() const override { if (scalability_mode_.empty()) { return num_temporal_layers_.size(); } else { return scalability_mode_.size(); } } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { webrtc::VideoEncoder::EncoderInfo encoder_info; send_config->encoder_settings.encoder_factory = encoder_factory_; send_config->rtp.payload_name = payload_name_; send_config->rtp.payload_type = test::CallTest::kVideoSendPayloadType; encoder_config->video_format.name = payload_name_; encoder_config->codec_type = PayloadStringToCodecType(payload_name_); encoder_config->video_stream_factory = rtc::make_ref_counted( payload_name_, /*max_qp=*/56, /*is_screenshare=*/false, /*conference_mode=*/false, encoder_info); encoder_config->max_bitrate_bps = kMaxBitrateBps; if (absl::EqualsIgnoreCase(payload_name_, "VP9")) { encoder_config->encoder_specific_settings = rtc::make_ref_counted< VideoEncoderConfig::Vp9EncoderSpecificSettings>( VideoEncoder::GetDefaultVp9Settings()); } if (scalability_mode_.empty()) { for (size_t i = 0; i < num_temporal_layers_.size(); ++i) { VideoStream& stream = encoder_config->simulcast_layers[i]; stream.num_temporal_layers = num_temporal_layers_[i]; configured_num_temporal_layers_[send_config->rtp.ssrcs[i]] = num_temporal_layers_[i]; } } else { for (size_t i = 0; i < scalability_mode_.size(); ++i) { VideoStream& stream = encoder_config->simulcast_layers[i]; stream.scalability_mode = scalability_mode_[i]; configured_num_temporal_layers_[send_config->rtp.ssrcs[i]] = ScalabilityModeToNumTemporalLayers(scalability_mode_[i]); } } } struct ParsedPacket { uint32_t timestamp; uint32_t ssrc; int temporal_idx; }; bool ParsePayload(const uint8_t* packet, size_t length, ParsedPacket& parsed) const { RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); if (rtp_packet.payload_size() == 0) { return false; // Padding packet. } parsed.timestamp = rtp_packet.Timestamp(); parsed.ssrc = rtp_packet.Ssrc(); absl::optional parsed_payload = depacketizer_->Parse(rtp_packet.PayloadBuffer()); EXPECT_TRUE(parsed_payload); if (const auto* vp8_header = absl::get_if( &parsed_payload->video_header.video_type_header)) { parsed.temporal_idx = vp8_header->temporalIdx; } else if (const auto* vp9_header = absl::get_if( &parsed_payload->video_header.video_type_header)) { parsed.temporal_idx = vp9_header->temporal_idx; } else { RTC_DCHECK_NOTREACHED(); } return true; } Action OnSendRtp(const uint8_t* packet, size_t length) override { ParsedPacket parsed; if (!ParsePayload(packet, length, parsed)) return SEND_PACKET; uint32_t ssrc = parsed.ssrc; int temporal_idx = parsed.temporal_idx == kNoTemporalIdx ? 0 : parsed.temporal_idx; max_observed_tl_idxs_[ssrc] = std::max(temporal_idx, max_observed_tl_idxs_[ssrc]); if (last_observed_packet_.count(ssrc) == 0 || parsed.timestamp != last_observed_packet_[ssrc].timestamp) { num_observed_frames_[ssrc]++; } last_observed_packet_[ssrc] = parsed; if (HighestTemporalLayerSentPerStream()) observation_complete_.Set(); return SEND_PACKET; } bool HighestTemporalLayerSentPerStream() const { if (num_observed_frames_.size() != configured_num_temporal_layers_.size()) { return false; } for (const auto& num_frames : num_observed_frames_) { if (num_frames.second < kMinFramesToObservePerStream) { return false; } } if (max_observed_tl_idxs_.size() != configured_num_temporal_layers_.size()) { return false; } for (const auto& max_tl_idx : max_observed_tl_idxs_) { uint32_t ssrc = max_tl_idx.first; int configured_num_tls = configured_num_temporal_layers_.find(ssrc)->second; if (max_tl_idx.second != configured_num_tls - 1) return false; } return true; } void PerformTest() override { EXPECT_TRUE(Wait()); } VideoEncoderFactory* const encoder_factory_; const std::string payload_name_; const std::vector num_temporal_layers_; const std::vector scalability_mode_; const std::unique_ptr depacketizer_; // Mapped by SSRC. std::map configured_num_temporal_layers_; std::map max_observed_tl_idxs_; std::map num_observed_frames_; std::map last_observed_packet_; } test(encoder_factory, payload_name, num_temporal_layers, scalability_mode); RunBaseTest(&test); } TEST_F(VideoSendStreamTest, TestTemporalLayersVp8) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{2}, /*scalability_mode=*/{}); } TEST_F(VideoSendStreamTest, TestTemporalLayersVp8Simulcast) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{2, 2}, /*scalability_mode=*/{}); } TEST_F(VideoSendStreamTest, TestTemporalLayersVp8SimulcastWithDifferentNumTls) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{3, 1}, /*scalability_mode=*/{}); } TEST_F(VideoSendStreamTest, TestTemporalLayersVp8SimulcastWithoutSimAdapter) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{2, 2}, /*scalability_mode=*/{}); } TEST_F(VideoSendStreamTest, TestScalabilityModeVp8L1T2) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{}, {ScalabilityMode::kL1T2}); } TEST_F(VideoSendStreamTest, TestScalabilityModeVp8Simulcast) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{}, {ScalabilityMode::kL1T2, ScalabilityMode::kL1T2}); } TEST_F(VideoSendStreamTest, TestScalabilityModeVp8SimulcastWithDifferentMode) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{}, {ScalabilityMode::kL1T3, ScalabilityMode::kL1T1}); } TEST_F(VideoSendStreamTest, TestScalabilityModeVp8SimulcastWithoutSimAdapter) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP8Encoder::Create(); }); TestTemporalLayers(&encoder_factory, "VP8", /*num_temporal_layers=*/{}, {ScalabilityMode::kL1T2, ScalabilityMode::kL1T2}); } TEST_F(VideoSendStreamTest, TestTemporalLayersVp9) { test::FunctionVideoEncoderFactory encoder_factory( []() { return VP9Encoder::Create(); }); TestTemporalLayers(&encoder_factory, "VP9", /*num_temporal_layers=*/{2}, /*scalability_mode=*/{}); } } // namespace webrtc