use crate::Adler32; use std::ops::{AddAssign, MulAssign, RemAssign}; impl Adler32 { pub(crate) fn compute(&mut self, bytes: &[u8]) { // The basic algorithm is, for every byte: // a = (a + byte) % MOD // b = (b + a) % MOD // where MOD = 65521. // // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows: // - Between calls to `write`, we ensure that a and b are always in range 0..MOD. // - We use 32-bit arithmetic in this function. // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD` // operation. // // According to Wikipedia, b is calculated as follows for non-incremental checksumming: // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521) // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account // for the previous values of a and b, as well as treat every input Byte as being 255: // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520 // Or in other words: // b_inc = n*65520 + n(n+1)/2*255 // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521. // 2^32-65521 = n*65520 + n(n+1)/2*255 // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552. // // On top of the optimization outlined above, the algorithm can also be parallelized with a // bit more work: // // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn). // // If we fix some value k Self { U32X4([ u32::from(bytes[0]), u32::from(bytes[1]), u32::from(bytes[2]), u32::from(bytes[3]), ]) } } impl AddAssign for U32X4 { fn add_assign(&mut self, other: Self) { for (s, o) in self.0.iter_mut().zip(other.0.iter()) { *s += o; } } } impl RemAssign for U32X4 { fn rem_assign(&mut self, quotient: u32) { for s in self.0.iter_mut() { *s %= quotient; } } } impl MulAssign for U32X4 { fn mul_assign(&mut self, rhs: u32) { for s in self.0.iter_mut() { *s *= rhs; } } }