// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An implementation of a set using a bit vector as an underlying //! representation for holding unsigned numerical elements. //! //! It should also be noted that the amount of storage necessary for holding a //! set of objects is proportional to the maximum of the objects when viewed //! as a `usize`. //! //! # Examples //! //! ``` //! use bit_set::BitSet; //! //! // It's a regular set //! let mut s = BitSet::new(); //! s.insert(0); //! s.insert(3); //! s.insert(7); //! //! s.remove(7); //! //! if !s.contains(7) { //! println!("There is no 7"); //! } //! //! // Can initialize from a `BitVec` //! let other = BitSet::from_bytes(&[0b11010000]); //! //! s.union_with(&other); //! //! // Print 0, 1, 3 in some order //! for x in s.iter() { //! println!("{}", x); //! } //! //! // Can convert back to a `BitVec` //! let bv = s.into_bit_vec(); //! assert!(bv[3]); //! ``` #![no_std] #![cfg_attr(all(test, feature = "nightly"), feature(test))] extern crate bit_vec; #[cfg(all(test, feature = "nightly"))] extern crate rand; #[cfg(all(test, feature = "nightly"))] extern crate test; #[cfg(test)] #[macro_use] extern crate std; use bit_vec::{BitBlock, BitVec, Blocks}; use core::cmp; use core::cmp::Ordering; use core::fmt; use core::hash; use core::iter::{self, Chain, Enumerate, FromIterator, Repeat, Skip, Take}; type MatchWords<'a, B> = Chain>, Skip>>>>; /// Computes how many blocks are needed to store that many bits fn blocks_for_bits(bits: usize) -> usize { // If we want 17 bits, dividing by 32 will produce 0. So we add 1 to make sure we // reserve enough. But if we want exactly a multiple of 32, this will actually allocate // one too many. So we need to check if that's the case. We can do that by computing if // bitwise AND by `32 - 1` is 0. But LLVM should be able to optimize the semantically // superior modulo operator on a power of two to this. // // Note that we can technically avoid this branch with the expression // `(nbits + BITS - 1) / 32::BITS`, but if nbits is almost usize::MAX this will overflow. if bits % B::bits() == 0 { bits / B::bits() } else { bits / B::bits() + 1 } } // Take two BitVec's, and return iterators of their words, where the shorter one // has been padded with 0's fn match_words<'a, 'b, B: BitBlock>( a: &'a BitVec, b: &'b BitVec, ) -> (MatchWords<'a, B>, MatchWords<'b, B>) { let a_len = a.storage().len(); let b_len = b.storage().len(); // have to uselessly pretend to pad the longer one for type matching if a_len < b_len { ( a.blocks() .enumerate() .chain(iter::repeat(B::zero()).enumerate().take(b_len).skip(a_len)), b.blocks() .enumerate() .chain(iter::repeat(B::zero()).enumerate().take(0).skip(0)), ) } else { ( a.blocks() .enumerate() .chain(iter::repeat(B::zero()).enumerate().take(0).skip(0)), b.blocks() .enumerate() .chain(iter::repeat(B::zero()).enumerate().take(a_len).skip(b_len)), ) } } pub struct BitSet { bit_vec: BitVec, } impl Clone for BitSet { fn clone(&self) -> Self { BitSet { bit_vec: self.bit_vec.clone(), } } fn clone_from(&mut self, other: &Self) { self.bit_vec.clone_from(&other.bit_vec); } } impl Default for BitSet { #[inline] fn default() -> Self { BitSet { bit_vec: Default::default(), } } } impl FromIterator for BitSet { fn from_iter>(iter: I) -> Self { let mut ret = Self::default(); ret.extend(iter); ret } } impl Extend for BitSet { #[inline] fn extend>(&mut self, iter: I) { for i in iter { self.insert(i); } } } impl PartialOrd for BitSet { #[inline] fn partial_cmp(&self, other: &Self) -> Option { self.iter().partial_cmp(other) } } impl Ord for BitSet { #[inline] fn cmp(&self, other: &Self) -> Ordering { self.iter().cmp(other) } } impl PartialEq for BitSet { #[inline] fn eq(&self, other: &Self) -> bool { self.iter().eq(other) } } impl Eq for BitSet {} impl BitSet { /// Creates a new empty `BitSet`. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// ``` #[inline] pub fn new() -> Self { Self::default() } /// Creates a new `BitSet` with initially no contents, able to /// hold `nbits` elements without resizing. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::with_capacity(100); /// assert!(s.capacity() >= 100); /// ``` #[inline] pub fn with_capacity(nbits: usize) -> Self { let bit_vec = BitVec::from_elem(nbits, false); Self::from_bit_vec(bit_vec) } /// Creates a new `BitSet` from the given bit vector. /// /// # Examples /// /// ``` /// extern crate bit_vec; /// extern crate bit_set; /// /// fn main() { /// use bit_vec::BitVec; /// use bit_set::BitSet; /// /// let bv = BitVec::from_bytes(&[0b01100000]); /// let s = BitSet::from_bit_vec(bv); /// /// // Print 1, 2 in arbitrary order /// for x in s.iter() { /// println!("{}", x); /// } /// } /// ``` #[inline] pub fn from_bit_vec(bit_vec: BitVec) -> Self { BitSet { bit_vec } } pub fn from_bytes(bytes: &[u8]) -> Self { BitSet { bit_vec: BitVec::from_bytes(bytes), } } } impl BitSet { /// Returns the capacity in bits for this bit vector. Inserting any /// element less than this amount will not trigger a resizing. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::with_capacity(100); /// assert!(s.capacity() >= 100); /// ``` #[inline] pub fn capacity(&self) -> usize { self.bit_vec.capacity() } /// Reserves capacity for the given `BitSet` to contain `len` distinct elements. In the case /// of `BitSet` this means reallocations will not occur as long as all inserted elements /// are less than `len`. /// /// The collection may reserve more space to avoid frequent reallocations. /// /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.reserve_len(10); /// assert!(s.capacity() >= 10); /// ``` pub fn reserve_len(&mut self, len: usize) { let cur_len = self.bit_vec.len(); if len >= cur_len { self.bit_vec.reserve(len - cur_len); } } /// Reserves the minimum capacity for the given `BitSet` to contain `len` distinct elements. /// In the case of `BitSet` this means reallocations will not occur as long as all inserted /// elements are less than `len`. /// /// Note that the allocator may give the collection more space than it requests. Therefore /// capacity can not be relied upon to be precisely minimal. Prefer `reserve_len` if future /// insertions are expected. /// /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.reserve_len_exact(10); /// assert!(s.capacity() >= 10); /// ``` pub fn reserve_len_exact(&mut self, len: usize) { let cur_len = self.bit_vec.len(); if len >= cur_len { self.bit_vec.reserve_exact(len - cur_len); } } /// Consumes this set to return the underlying bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.insert(0); /// s.insert(3); /// /// let bv = s.into_bit_vec(); /// assert!(bv[0]); /// assert!(bv[3]); /// ``` #[inline] pub fn into_bit_vec(self) -> BitVec { self.bit_vec } /// Returns a reference to the underlying bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.insert(0); /// /// let bv = s.get_ref(); /// assert_eq!(bv[0], true); /// ``` #[inline] pub fn get_ref(&self) -> &BitVec { &self.bit_vec } #[inline] fn other_op(&mut self, other: &Self, mut f: F) where F: FnMut(B, B) -> B, { // Unwrap BitVecs let self_bit_vec = &mut self.bit_vec; let other_bit_vec = &other.bit_vec; let self_len = self_bit_vec.len(); let other_len = other_bit_vec.len(); // Expand the vector if necessary if self_len < other_len { self_bit_vec.grow(other_len - self_len, false); } // virtually pad other with 0's for equal lengths let other_words = { let (_, result) = match_words(self_bit_vec, other_bit_vec); result }; // Apply values found in other for (i, w) in other_words { let old = self_bit_vec.storage()[i]; let new = f(old, w); unsafe { self_bit_vec.storage_mut()[i] = new; } } } /// Truncates the underlying vector to the least length required. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut s = BitSet::new(); /// s.insert(32183231); /// s.remove(32183231); /// /// // Internal storage will probably be bigger than necessary /// println!("old capacity: {}", s.capacity()); /// /// // Now should be smaller /// s.shrink_to_fit(); /// println!("new capacity: {}", s.capacity()); /// ``` #[inline] pub fn shrink_to_fit(&mut self) { let bit_vec = &mut self.bit_vec; // Obtain original length let old_len = bit_vec.storage().len(); // Obtain coarse trailing zero length let n = bit_vec .storage() .iter() .rev() .take_while(|&&n| n == B::zero()) .count(); // Truncate away all empty trailing blocks, then shrink_to_fit let trunc_len = old_len - n; unsafe { bit_vec.storage_mut().truncate(trunc_len); bit_vec.set_len(trunc_len * B::bits()); bit_vec.shrink_to_fit(); } } /// Iterator over each usize stored in the `BitSet`. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let s = BitSet::from_bytes(&[0b01001010]); /// /// // Print 1, 4, 6 in arbitrary order /// for x in s.iter() { /// println!("{}", x); /// } /// ``` #[inline] pub fn iter(&self) -> Iter { Iter(BlockIter::from_blocks(self.bit_vec.blocks())) } /// Iterator over each usize stored in `self` union `other`. /// See [union_with](#method.union_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 0, 1, 2, 4 in arbitrary order /// for x in a.union(&b) { /// println!("{}", x); /// } /// ``` #[inline] pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, B> { fn or(w1: B, w2: B) -> B { w1 | w2 } Union(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: or, })) } /// Iterator over each usize stored in `self` intersect `other`. /// See [intersect_with](#method.intersect_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 2 /// for x in a.intersection(&b) { /// println!("{}", x); /// } /// ``` #[inline] pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, B> { fn bitand(w1: B, w2: B) -> B { w1 & w2 } let min = cmp::min(self.bit_vec.len(), other.bit_vec.len()); Intersection( BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: bitand, }) .take(min), ) } /// Iterator over each usize stored in the `self` setminus `other`. /// See [difference_with](#method.difference_with) for an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 1, 4 in arbitrary order /// for x in a.difference(&b) { /// println!("{}", x); /// } /// /// // Note that difference is not symmetric, /// // and `b - a` means something else. /// // This prints 0 /// for x in b.difference(&a) { /// println!("{}", x); /// } /// ``` #[inline] pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, B> { fn diff(w1: B, w2: B) -> B { w1 & !w2 } Difference(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: diff, })) } /// Iterator over each usize stored in the symmetric difference of `self` and `other`. /// See [symmetric_difference_with](#method.symmetric_difference_with) for /// an efficient in-place version. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = BitSet::from_bytes(&[0b01101000]); /// let b = BitSet::from_bytes(&[0b10100000]); /// /// // Print 0, 1, 4 in arbitrary order /// for x in a.symmetric_difference(&b) { /// println!("{}", x); /// } /// ``` #[inline] pub fn symmetric_difference<'a>(&'a self, other: &'a Self) -> SymmetricDifference<'a, B> { fn bitxor(w1: B, w2: B) -> B { w1 ^ w2 } SymmetricDifference(BlockIter::from_blocks(TwoBitPositions { set: self.bit_vec.blocks(), other: other.bit_vec.blocks(), merge: bitxor, })) } /// Unions in-place with the specified other bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b11101000; /// /// let mut a = BitSet::from_bytes(&[a]); /// let b = BitSet::from_bytes(&[b]); /// let res = BitSet::from_bytes(&[res]); /// /// a.union_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn union_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 | w2); } /// Intersects in-place with the specified other bit vector. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b00100000; /// /// let mut a = BitSet::from_bytes(&[a]); /// let b = BitSet::from_bytes(&[b]); /// let res = BitSet::from_bytes(&[res]); /// /// a.intersect_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn intersect_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 & w2); } /// Makes this bit vector the difference with the specified other bit vector /// in-place. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let a_b = 0b01001000; // a - b /// let b_a = 0b10000000; // b - a /// /// let mut bva = BitSet::from_bytes(&[a]); /// let bvb = BitSet::from_bytes(&[b]); /// let bva_b = BitSet::from_bytes(&[a_b]); /// let bvb_a = BitSet::from_bytes(&[b_a]); /// /// bva.difference_with(&bvb); /// assert_eq!(bva, bva_b); /// /// let bva = BitSet::from_bytes(&[a]); /// let mut bvb = BitSet::from_bytes(&[b]); /// /// bvb.difference_with(&bva); /// assert_eq!(bvb, bvb_a); /// ``` #[inline] pub fn difference_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 & !w2); } /// Makes this bit vector the symmetric difference with the specified other /// bit vector in-place. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let a = 0b01101000; /// let b = 0b10100000; /// let res = 0b11001000; /// /// let mut a = BitSet::from_bytes(&[a]); /// let b = BitSet::from_bytes(&[b]); /// let res = BitSet::from_bytes(&[res]); /// /// a.symmetric_difference_with(&b); /// assert_eq!(a, res); /// ``` #[inline] pub fn symmetric_difference_with(&mut self, other: &Self) { self.other_op(other, |w1, w2| w1 ^ w2); } /* /// Moves all elements from `other` into `Self`, leaving `other` empty. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut a = BitSet::new(); /// a.insert(2); /// a.insert(6); /// /// let mut b = BitSet::new(); /// b.insert(1); /// b.insert(3); /// b.insert(6); /// /// a.append(&mut b); /// /// assert_eq!(a.len(), 4); /// assert_eq!(b.len(), 0); /// assert_eq!(a, BitSet::from_bytes(&[0b01110010])); /// ``` pub fn append(&mut self, other: &mut Self) { self.union_with(other); other.clear(); } /// Splits the `BitSet` into two at the given key including the key. /// Retains the first part in-place while returning the second part. /// /// # Examples /// /// ``` /// use bit_set::BitSet; /// /// let mut a = BitSet::new(); /// a.insert(2); /// a.insert(6); /// a.insert(1); /// a.insert(3); /// /// let b = a.split_off(3); /// /// assert_eq!(a.len(), 2); /// assert_eq!(b.len(), 2); /// assert_eq!(a, BitSet::from_bytes(&[0b01100000])); /// assert_eq!(b, BitSet::from_bytes(&[0b00010010])); /// ``` pub fn split_off(&mut self, at: usize) -> Self { let mut other = BitSet::new(); if at == 0 { swap(self, &mut other); return other; } else if at >= self.bit_vec.len() { return other; } // Calculate block and bit at which to split let w = at / BITS; let b = at % BITS; // Pad `other` with `w` zero blocks, // append `self`'s blocks in the range from `w` to the end to `other` other.bit_vec.storage_mut().extend(repeat(0u32).take(w) .chain(self.bit_vec.storage()[w..].iter().cloned())); other.bit_vec.nbits = self.bit_vec.nbits; if b > 0 { other.bit_vec.storage_mut()[w] &= !0 << b; } // Sets `bit_vec.len()` and fixes the last block as well self.bit_vec.truncate(at); other } */ /// Returns the number of set bits in this set. #[inline] pub fn len(&self) -> usize { self.bit_vec .blocks() .fold(0, |acc, n| acc + n.count_ones() as usize) } /// Returns whether there are no bits set in this set #[inline] pub fn is_empty(&self) -> bool { self.bit_vec.none() } /// Clears all bits in this set #[inline] pub fn clear(&mut self) { self.bit_vec.clear(); } /// Returns `true` if this set contains the specified integer. #[inline] pub fn contains(&self, value: usize) -> bool { let bit_vec = &self.bit_vec; value < bit_vec.len() && bit_vec[value] } /// Returns `true` if the set has no elements in common with `other`. /// This is equivalent to checking for an empty intersection. #[inline] pub fn is_disjoint(&self, other: &Self) -> bool { self.intersection(other).next().is_none() } /// Returns `true` if the set is a subset of another. #[inline] pub fn is_subset(&self, other: &Self) -> bool { let self_bit_vec = &self.bit_vec; let other_bit_vec = &other.bit_vec; let other_blocks = blocks_for_bits::(other_bit_vec.len()); // Check that `self` intersect `other` is self self_bit_vec.blocks().zip(other_bit_vec.blocks()).all(|(w1, w2)| w1 & w2 == w1) && // Make sure if `self` has any more blocks than `other`, they're all 0 self_bit_vec.blocks().skip(other_blocks).all(|w| w == B::zero()) } /// Returns `true` if the set is a superset of another. #[inline] pub fn is_superset(&self, other: &Self) -> bool { other.is_subset(self) } /// Adds a value to the set. Returns `true` if the value was not already /// present in the set. pub fn insert(&mut self, value: usize) -> bool { if self.contains(value) { return false; } // Ensure we have enough space to hold the new element let len = self.bit_vec.len(); if value >= len { self.bit_vec.grow(value - len + 1, false) } self.bit_vec.set(value, true); true } /// Removes a value from the set. Returns `true` if the value was /// present in the set. pub fn remove(&mut self, value: usize) -> bool { if !self.contains(value) { return false; } self.bit_vec.set(value, false); true } } impl fmt::Debug for BitSet { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fmt.debug_set().entries(self).finish() } } impl hash::Hash for BitSet { fn hash(&self, state: &mut H) { for pos in self { pos.hash(state); } } } #[derive(Clone)] struct BlockIter { head: B, head_offset: usize, tail: T, } impl BlockIter where T: Iterator, { fn from_blocks(mut blocks: T) -> BlockIter { let h = blocks.next().unwrap_or_else(B::zero); BlockIter { tail: blocks, head: h, head_offset: 0, } } } /// An iterator combining two `BitSet` iterators. #[derive(Clone)] struct TwoBitPositions<'a, B: 'a> { set: Blocks<'a, B>, other: Blocks<'a, B>, merge: fn(B, B) -> B, } /// An iterator for `BitSet`. #[derive(Clone)] pub struct Iter<'a, B: 'a>(BlockIter, B>); #[derive(Clone)] pub struct Union<'a, B: 'a>(BlockIter, B>); #[derive(Clone)] pub struct Intersection<'a, B: 'a>(Take, B>>); #[derive(Clone)] pub struct Difference<'a, B: 'a>(BlockIter, B>); #[derive(Clone)] pub struct SymmetricDifference<'a, B: 'a>(BlockIter, B>); impl<'a, T, B: BitBlock> Iterator for BlockIter where T: Iterator, { type Item = usize; fn next(&mut self) -> Option { while self.head == B::zero() { match self.tail.next() { Some(w) => self.head = w, None => return None, } self.head_offset += B::bits(); } // from the current block, isolate the // LSB and subtract 1, producing k: // a block with a number of set bits // equal to the index of the LSB let k = (self.head & (!self.head + B::one())) - B::one(); // update block, removing the LSB self.head = self.head & (self.head - B::one()); // return offset + (index of LSB) Some(self.head_offset + (B::count_ones(k) as usize)) } #[inline] fn size_hint(&self) -> (usize, Option) { match self.tail.size_hint() { (_, Some(h)) => (0, Some(1 + h * B::bits())), _ => (0, None), } } } impl<'a, B: BitBlock> Iterator for TwoBitPositions<'a, B> { type Item = B; fn next(&mut self) -> Option { match (self.set.next(), self.other.next()) { (Some(a), Some(b)) => Some((self.merge)(a, b)), (Some(a), None) => Some((self.merge)(a, B::zero())), (None, Some(b)) => Some((self.merge)(B::zero(), b)), _ => None, } } #[inline] fn size_hint(&self) -> (usize, Option) { let (a, au) = self.set.size_hint(); let (b, bu) = self.other.size_hint(); let upper = match (au, bu) { (Some(au), Some(bu)) => Some(cmp::max(au, bu)), _ => None, }; (cmp::max(a, b), upper) } } impl<'a, B: BitBlock> Iterator for Iter<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for Union<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for Intersection<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for Difference<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> Iterator for SymmetricDifference<'a, B> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.0.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.0.size_hint() } } impl<'a, B: BitBlock> IntoIterator for &'a BitSet { type Item = usize; type IntoIter = Iter<'a, B>; fn into_iter(self) -> Iter<'a, B> { self.iter() } } #[cfg(test)] mod tests { use super::BitSet; use bit_vec::BitVec; use std::cmp::Ordering::{Equal, Greater, Less}; use std::vec::Vec; #[test] fn test_bit_set_show() { let mut s = BitSet::new(); s.insert(1); s.insert(10); s.insert(50); s.insert(2); assert_eq!("{1, 2, 10, 50}", format!("{:?}", s)); } #[test] fn test_bit_set_from_usizes() { let usizes = vec![0, 2, 2, 3]; let a: BitSet = usizes.into_iter().collect(); let mut b = BitSet::new(); b.insert(0); b.insert(2); b.insert(3); assert_eq!(a, b); } #[test] fn test_bit_set_iterator() { let usizes = vec![0, 2, 2, 3]; let bit_vec: BitSet = usizes.into_iter().collect(); let idxs: Vec<_> = bit_vec.iter().collect(); assert_eq!(idxs, [0, 2, 3]); let long: BitSet = (0..10000).filter(|&n| n % 2 == 0).collect(); let real: Vec<_> = (0..10000 / 2).map(|x| x * 2).collect(); let idxs: Vec<_> = long.iter().collect(); assert_eq!(idxs, real); } #[test] fn test_bit_set_frombit_vec_init() { let bools = [true, false]; let lengths = [10, 64, 100]; for &b in &bools { for &l in &lengths { let bitset = BitSet::from_bit_vec(BitVec::from_elem(l, b)); assert_eq!(bitset.contains(1), b); assert_eq!(bitset.contains(l - 1), b); assert!(!bitset.contains(l)); } } } #[test] fn test_bit_vec_masking() { let b = BitVec::from_elem(140, true); let mut bs = BitSet::from_bit_vec(b); assert!(bs.contains(139)); assert!(!bs.contains(140)); assert!(bs.insert(150)); assert!(!bs.contains(140)); assert!(!bs.contains(149)); assert!(bs.contains(150)); assert!(!bs.contains(151)); } #[test] fn test_bit_set_basic() { let mut b = BitSet::new(); assert!(b.insert(3)); assert!(!b.insert(3)); assert!(b.contains(3)); assert!(b.insert(4)); assert!(!b.insert(4)); assert!(b.contains(3)); assert!(b.insert(400)); assert!(!b.insert(400)); assert!(b.contains(400)); assert_eq!(b.len(), 3); } #[test] fn test_bit_set_intersection() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(11)); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(77)); assert!(a.insert(103)); assert!(a.insert(5)); assert!(b.insert(2)); assert!(b.insert(11)); assert!(b.insert(77)); assert!(b.insert(5)); assert!(b.insert(3)); let expected = [3, 5, 11, 77]; let actual: Vec<_> = a.intersection(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_difference() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(200)); assert!(a.insert(500)); assert!(b.insert(3)); assert!(b.insert(200)); let expected = [1, 5, 500]; let actual: Vec<_> = a.difference(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_symmetric_difference() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(b.insert(3)); assert!(b.insert(9)); assert!(b.insert(14)); assert!(b.insert(220)); let expected = [1, 5, 11, 14, 220]; let actual: Vec<_> = a.symmetric_difference(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_union() { let mut a = BitSet::new(); let mut b = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(3)); assert!(a.insert(5)); assert!(a.insert(9)); assert!(a.insert(11)); assert!(a.insert(160)); assert!(a.insert(19)); assert!(a.insert(24)); assert!(a.insert(200)); assert!(b.insert(1)); assert!(b.insert(5)); assert!(b.insert(9)); assert!(b.insert(13)); assert!(b.insert(19)); let expected = [1, 3, 5, 9, 11, 13, 19, 24, 160, 200]; let actual: Vec<_> = a.union(&b).collect(); assert_eq!(actual, expected); } #[test] fn test_bit_set_subset() { let mut set1 = BitSet::new(); let mut set2 = BitSet::new(); assert!(set1.is_subset(&set2)); // {} {} set2.insert(100); assert!(set1.is_subset(&set2)); // {} { 1 } set2.insert(200); assert!(set1.is_subset(&set2)); // {} { 1, 2 } set1.insert(200); assert!(set1.is_subset(&set2)); // { 2 } { 1, 2 } set1.insert(300); assert!(!set1.is_subset(&set2)); // { 2, 3 } { 1, 2 } set2.insert(300); assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3 } set2.insert(400); assert!(set1.is_subset(&set2)); // { 2, 3 } { 1, 2, 3, 4 } set2.remove(100); assert!(set1.is_subset(&set2)); // { 2, 3 } { 2, 3, 4 } set2.remove(300); assert!(!set1.is_subset(&set2)); // { 2, 3 } { 2, 4 } set1.remove(300); assert!(set1.is_subset(&set2)); // { 2 } { 2, 4 } } #[test] fn test_bit_set_is_disjoint() { let a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::from_bytes(&[0b01000000]); let c = BitSet::new(); let d = BitSet::from_bytes(&[0b00110000]); assert!(!a.is_disjoint(&d)); assert!(!d.is_disjoint(&a)); assert!(a.is_disjoint(&b)); assert!(a.is_disjoint(&c)); assert!(b.is_disjoint(&a)); assert!(b.is_disjoint(&c)); assert!(c.is_disjoint(&a)); assert!(c.is_disjoint(&b)); } #[test] fn test_bit_set_union_with() { //a should grow to include larger elements let mut a = BitSet::new(); a.insert(0); let mut b = BitSet::new(); b.insert(5); let expected = BitSet::from_bytes(&[0b10000100]); a.union_with(&b); assert_eq!(a, expected); // Standard let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b01100010]); let c = a.clone(); a.union_with(&b); b.union_with(&c); assert_eq!(a.len(), 4); assert_eq!(b.len(), 4); } #[test] fn test_bit_set_intersect_with() { // Explicitly 0'ed bits let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b00000000]); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert!(a.is_empty()); assert!(b.is_empty()); // Uninitialized bits should behave like 0's let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::new(); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert!(a.is_empty()); assert!(b.is_empty()); // Standard let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b01100010]); let c = a.clone(); a.intersect_with(&b); b.intersect_with(&c); assert_eq!(a.len(), 2); assert_eq!(b.len(), 2); } #[test] fn test_bit_set_difference_with() { // Explicitly 0'ed bits let mut a = BitSet::from_bytes(&[0b00000000]); let b = BitSet::from_bytes(&[0b10100010]); a.difference_with(&b); assert!(a.is_empty()); // Uninitialized bits should behave like 0's let mut a = BitSet::new(); let b = BitSet::from_bytes(&[0b11111111]); a.difference_with(&b); assert!(a.is_empty()); // Standard let mut a = BitSet::from_bytes(&[0b10100010]); let mut b = BitSet::from_bytes(&[0b01100010]); let c = a.clone(); a.difference_with(&b); b.difference_with(&c); assert_eq!(a.len(), 1); assert_eq!(b.len(), 1); } #[test] fn test_bit_set_symmetric_difference_with() { //a should grow to include larger elements let mut a = BitSet::new(); a.insert(0); a.insert(1); let mut b = BitSet::new(); b.insert(1); b.insert(5); let expected = BitSet::from_bytes(&[0b10000100]); a.symmetric_difference_with(&b); assert_eq!(a, expected); let mut a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::new(); let c = a.clone(); a.symmetric_difference_with(&b); assert_eq!(a, c); // Standard let mut a = BitSet::from_bytes(&[0b11100010]); let mut b = BitSet::from_bytes(&[0b01101010]); let c = a.clone(); a.symmetric_difference_with(&b); b.symmetric_difference_with(&c); assert_eq!(a.len(), 2); assert_eq!(b.len(), 2); } #[test] fn test_bit_set_eq() { let a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::from_bytes(&[0b00000000]); let c = BitSet::new(); assert!(a == a); assert!(a != b); assert!(a != c); assert!(b == b); assert!(b == c); assert!(c == c); } #[test] fn test_bit_set_cmp() { let a = BitSet::from_bytes(&[0b10100010]); let b = BitSet::from_bytes(&[0b00000000]); let c = BitSet::new(); assert_eq!(a.cmp(&b), Greater); assert_eq!(a.cmp(&c), Greater); assert_eq!(b.cmp(&a), Less); assert_eq!(b.cmp(&c), Equal); assert_eq!(c.cmp(&a), Less); assert_eq!(c.cmp(&b), Equal); } #[test] fn test_bit_set_shrink_to_fit_new() { // There was a strange bug where we refused to truncate to 0 // and this would end up actually growing the array in a way // that (safely corrupted the state). let mut a = BitSet::new(); assert_eq!(a.len(), 0); assert_eq!(a.capacity(), 0); a.shrink_to_fit(); assert_eq!(a.len(), 0); assert_eq!(a.capacity(), 0); assert!(!a.contains(1)); a.insert(3); assert!(a.contains(3)); assert_eq!(a.len(), 1); assert!(a.capacity() > 0); a.shrink_to_fit(); assert!(a.contains(3)); assert_eq!(a.len(), 1); assert!(a.capacity() > 0); } #[test] fn test_bit_set_shrink_to_fit() { let mut a = BitSet::new(); assert_eq!(a.len(), 0); assert_eq!(a.capacity(), 0); a.insert(259); a.insert(98); a.insert(3); assert_eq!(a.len(), 3); assert!(a.capacity() > 0); assert!(!a.contains(1)); assert!(a.contains(259)); assert!(a.contains(98)); assert!(a.contains(3)); a.shrink_to_fit(); assert!(!a.contains(1)); assert!(a.contains(259)); assert!(a.contains(98)); assert!(a.contains(3)); assert_eq!(a.len(), 3); assert!(a.capacity() > 0); let old_cap = a.capacity(); assert!(a.remove(259)); a.shrink_to_fit(); assert!(a.capacity() < old_cap, "{} {}", a.capacity(), old_cap); assert!(!a.contains(1)); assert!(!a.contains(259)); assert!(a.contains(98)); assert!(a.contains(3)); assert_eq!(a.len(), 2); let old_cap2 = a.capacity(); a.clear(); assert_eq!(a.capacity(), old_cap2); assert_eq!(a.len(), 0); assert!(!a.contains(1)); assert!(!a.contains(259)); assert!(!a.contains(98)); assert!(!a.contains(3)); a.insert(512); assert!(a.capacity() > 0); assert_eq!(a.len(), 1); assert!(a.contains(512)); assert!(!a.contains(1)); assert!(!a.contains(259)); assert!(!a.contains(98)); assert!(!a.contains(3)); a.remove(512); a.shrink_to_fit(); assert_eq!(a.capacity(), 0); assert_eq!(a.len(), 0); assert!(!a.contains(512)); assert!(!a.contains(1)); assert!(!a.contains(259)); assert!(!a.contains(98)); assert!(!a.contains(3)); assert!(!a.contains(0)); } #[test] fn test_bit_vec_remove() { let mut a = BitSet::new(); assert!(a.insert(1)); assert!(a.remove(1)); assert!(a.insert(100)); assert!(a.remove(100)); assert!(a.insert(1000)); assert!(a.remove(1000)); a.shrink_to_fit(); } #[test] fn test_bit_vec_clone() { let mut a = BitSet::new(); assert!(a.insert(1)); assert!(a.insert(100)); assert!(a.insert(1000)); let mut b = a.clone(); assert!(a == b); assert!(b.remove(1)); assert!(a.contains(1)); assert!(a.remove(1000)); assert!(b.contains(1000)); } /* #[test] fn test_bit_set_append() { let mut a = BitSet::new(); a.insert(2); a.insert(6); let mut b = BitSet::new(); b.insert(1); b.insert(3); b.insert(6); a.append(&mut b); assert_eq!(a.len(), 4); assert_eq!(b.len(), 0); assert!(b.capacity() >= 6); assert_eq!(a, BitSet::from_bytes(&[0b01110010])); } #[test] fn test_bit_set_split_off() { // Split at 0 let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(0); assert_eq!(a.len(), 0); assert_eq!(b.len(), 21); assert_eq!(b, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); // Split behind last element let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(50); assert_eq!(a.len(), 21); assert_eq!(b.len(), 0); assert_eq!(a, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101])); // Split at arbitrary element let mut a = BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01101011, 0b10101101]); let b = a.split_off(34); assert_eq!(a.len(), 12); assert_eq!(b.len(), 9); assert_eq!(a, BitSet::from_bytes(&[0b10100000, 0b00010010, 0b10010010, 0b00110011, 0b01000000])); assert_eq!(b, BitSet::from_bytes(&[0, 0, 0, 0, 0b00101011, 0b10101101])); } */ } #[cfg(all(test, feature = "nightly"))] mod bench { use super::BitSet; use bit_vec::BitVec; use rand::{thread_rng, Rng, ThreadRng}; use test::{black_box, Bencher}; const BENCH_BITS: usize = 1 << 14; const BITS: usize = 32; fn rng() -> ThreadRng { thread_rng() } #[bench] fn bench_bit_vecset_small(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitSet::new(); b.iter(|| { for _ in 0..100 { bit_vec.insert((r.next_u32() as usize) % BITS); } black_box(&bit_vec); }); } #[bench] fn bench_bit_vecset_big(b: &mut Bencher) { let mut r = rng(); let mut bit_vec = BitSet::new(); b.iter(|| { for _ in 0..100 { bit_vec.insert((r.next_u32() as usize) % BENCH_BITS); } black_box(&bit_vec); }); } #[bench] fn bench_bit_vecset_iter(b: &mut Bencher) { let bit_vec = BitSet::from_bit_vec(BitVec::from_fn(BENCH_BITS, |idx| idx % 3 == 0)); b.iter(|| { let mut sum = 0; for idx in &bit_vec { sum += idx as usize; } sum }) } }