extern crate aes_gcm; use std::convert::TryInto; use std::borrow::{Borrow, BorrowMut}; use crate::secure::{base64, rand, Key}; use crate::{Cookie, CookieJar}; use self::aes_gcm::aead::{generic_array::GenericArray, Aead, AeadInPlace, KeyInit, Payload}; use self::aes_gcm::Aes256Gcm; use self::rand::RngCore; // Keep these in sync, and keep the key len synced with the `private` docs as // well as the `KEYS_INFO` const in secure::Key. pub(crate) const NONCE_LEN: usize = 12; pub(crate) const TAG_LEN: usize = 16; pub(crate) const KEY_LEN: usize = 32; /// A child cookie jar that provides authenticated encryption for its cookies. /// /// A _private_ child jar signs and encrypts all the cookies added to it and /// verifies and decrypts cookies retrieved from it. Any cookies stored in a /// `PrivateJar` are simultaneously assured confidentiality, integrity, and /// authenticity. In other words, clients cannot discover nor tamper with the /// contents of a cookie, nor can they fabricate cookie data. #[cfg_attr(all(nightly, doc), doc(cfg(feature = "private")))] pub struct PrivateJar { parent: J, key: [u8; KEY_LEN] } impl PrivateJar { /// Creates a new child `PrivateJar` with parent `parent` and key `key`. /// This method is typically called indirectly via the `signed` method of /// `CookieJar`. pub(crate) fn new(parent: J, key: &Key) -> PrivateJar { PrivateJar { parent, key: key.encryption().try_into().expect("enc key len") } } /// Encrypts the cookie's value with authenticated encryption providing /// confidentiality, integrity, and authenticity. fn encrypt_cookie(&self, cookie: &mut Cookie) { // Create a vec to hold the [nonce | cookie value | tag]. let cookie_val = cookie.value().as_bytes(); let mut data = vec![0; NONCE_LEN + cookie_val.len() + TAG_LEN]; // Split data into three: nonce, input/output, tag. Copy input. let (nonce, in_out) = data.split_at_mut(NONCE_LEN); let (in_out, tag) = in_out.split_at_mut(cookie_val.len()); in_out.copy_from_slice(cookie_val); // Fill nonce piece with random data. let mut rng = self::rand::thread_rng(); rng.try_fill_bytes(nonce).expect("couldn't random fill nonce"); let nonce = GenericArray::clone_from_slice(nonce); // Perform the actual sealing operation, using the cookie's name as // associated data to prevent value swapping. let aad = cookie.name().as_bytes(); let aead = Aes256Gcm::new(GenericArray::from_slice(&self.key)); let aad_tag = aead.encrypt_in_place_detached(&nonce, aad, in_out) .expect("encryption failure!"); // Copy the tag into the tag piece. tag.copy_from_slice(&aad_tag); // Base64 encode [nonce | encrypted value | tag]. cookie.set_value(base64::encode(&data)); } /// Given a sealed value `str` and a key name `name`, where the nonce is /// prepended to the original value and then both are Base64 encoded, /// verifies and decrypts the sealed value and returns it. If there's a /// problem, returns an `Err` with a string describing the issue. fn unseal(&self, name: &str, value: &str) -> Result { let data = base64::decode(value).map_err(|_| "bad base64 value")?; if data.len() <= NONCE_LEN { return Err("length of decoded data is <= NONCE_LEN"); } let (nonce, cipher) = data.split_at(NONCE_LEN); let payload = Payload { msg: cipher, aad: name.as_bytes() }; let aead = Aes256Gcm::new(GenericArray::from_slice(&self.key)); aead.decrypt(GenericArray::from_slice(nonce), payload) .map_err(|_| "invalid key/nonce/value: bad seal") .and_then(|s| String::from_utf8(s).map_err(|_| "bad unsealed utf8")) } /// Authenticates and decrypts `cookie`, returning the plaintext version if /// decryption succeeds or `None` otherwise. Authenticatation and decryption /// _always_ succeeds if `cookie` was generated by a `PrivateJar` with the /// same key as `self`. /// /// # Example /// /// ```rust /// use cookie::{CookieJar, Cookie, Key}; /// /// let key = Key::generate(); /// let mut jar = CookieJar::new(); /// assert!(jar.private(&key).get("name").is_none()); /// /// jar.private_mut(&key).add(Cookie::new("name", "value")); /// assert_eq!(jar.private(&key).get("name").unwrap().value(), "value"); /// /// let plain = jar.get("name").cloned().unwrap(); /// assert_ne!(plain.value(), "value"); /// let decrypted = jar.private(&key).decrypt(plain).unwrap(); /// assert_eq!(decrypted.value(), "value"); /// /// let plain = Cookie::new("plaintext", "hello"); /// assert!(jar.private(&key).decrypt(plain).is_none()); /// ``` pub fn decrypt(&self, mut cookie: Cookie<'static>) -> Option> { if let Ok(value) = self.unseal(cookie.name(), cookie.value()) { cookie.set_value(value); return Some(cookie); } None } } impl> PrivateJar { /// Returns a reference to the `Cookie` inside this jar with the name `name` /// and authenticates and decrypts the cookie's value, returning a `Cookie` /// with the decrypted value. If the cookie cannot be found, or the cookie /// fails to authenticate or decrypt, `None` is returned. /// /// # Example /// /// ```rust /// use cookie::{CookieJar, Cookie, Key}; /// /// let key = Key::generate(); /// let jar = CookieJar::new(); /// assert!(jar.private(&key).get("name").is_none()); /// /// let mut jar = jar; /// let mut private_jar = jar.private_mut(&key); /// private_jar.add(Cookie::new("name", "value")); /// assert_eq!(private_jar.get("name").unwrap().value(), "value"); /// ``` pub fn get(&self, name: &str) -> Option> { self.parent.borrow().get(name).and_then(|c| self.decrypt(c.clone())) } } impl> PrivateJar { /// Adds `cookie` to the parent jar. The cookie's value is encrypted with /// authenticated encryption assuring confidentiality, integrity, and /// authenticity. /// /// # Example /// /// ```rust /// use cookie::{CookieJar, Cookie, Key}; /// /// let key = Key::generate(); /// let mut jar = CookieJar::new(); /// jar.private_mut(&key).add(Cookie::new("name", "value")); /// /// assert_ne!(jar.get("name").unwrap().value(), "value"); /// assert_eq!(jar.private(&key).get("name").unwrap().value(), "value"); /// ``` pub fn add(&mut self, mut cookie: Cookie<'static>) { self.encrypt_cookie(&mut cookie); self.parent.borrow_mut().add(cookie); } /// Adds an "original" `cookie` to parent jar. The cookie's value is /// encrypted with authenticated encryption assuring confidentiality, /// integrity, and authenticity. Adding an original cookie does not affect /// the [`CookieJar::delta()`] computation. This method is intended to be /// used to seed the cookie jar with cookies received from a client's HTTP /// message. /// /// For accurate `delta` computations, this method should not be called /// after calling `remove`. /// /// # Example /// /// ```rust /// use cookie::{CookieJar, Cookie, Key}; /// /// let key = Key::generate(); /// let mut jar = CookieJar::new(); /// jar.private_mut(&key).add_original(Cookie::new("name", "value")); /// /// assert_eq!(jar.iter().count(), 1); /// assert_eq!(jar.delta().count(), 0); /// ``` pub fn add_original(&mut self, mut cookie: Cookie<'static>) { self.encrypt_cookie(&mut cookie); self.parent.borrow_mut().add_original(cookie); } /// Removes `cookie` from the parent jar. /// /// For correct removal, the passed in `cookie` must contain the same `path` /// and `domain` as the cookie that was initially set. /// /// This is identical to [`CookieJar::remove()`]. See the method's /// documentation for more details. /// /// # Example /// /// ```rust /// use cookie::{CookieJar, Cookie, Key}; /// /// let key = Key::generate(); /// let mut jar = CookieJar::new(); /// let mut private_jar = jar.private_mut(&key); /// /// private_jar.add(Cookie::new("name", "value")); /// assert!(private_jar.get("name").is_some()); /// /// private_jar.remove(Cookie::named("name")); /// assert!(private_jar.get("name").is_none()); /// ``` pub fn remove(&mut self, cookie: Cookie<'static>) { self.parent.borrow_mut().remove(cookie); } } #[cfg(test)] mod test { use crate::{CookieJar, Cookie, Key}; #[test] fn simple() { let key = Key::generate(); let mut jar = CookieJar::new(); assert_simple_behaviour!(jar, jar.private_mut(&key)); } #[test] fn secure() { let key = Key::generate(); let mut jar = CookieJar::new(); assert_secure_behaviour!(jar, jar.private_mut(&key)); } #[test] fn roundtrip() { // Secret is SHA-256 hash of 'Super secret!' passed through HKDF-SHA256. let key = Key::from(&[89, 202, 200, 125, 230, 90, 197, 245, 166, 249, 34, 169, 135, 31, 20, 197, 94, 154, 254, 79, 60, 26, 8, 143, 254, 24, 116, 138, 92, 225, 159, 60, 157, 41, 135, 129, 31, 226, 196, 16, 198, 168, 134, 4, 42, 1, 196, 24, 57, 103, 241, 147, 201, 185, 233, 10, 180, 170, 187, 89, 252, 137, 110, 107]); let mut jar = CookieJar::new(); jar.add(Cookie::new("encrypted_with_ring014", "lObeZJorGVyeSWUA8khTO/8UCzFVBY9g0MGU6/J3NN1R5x11dn2JIA==")); jar.add(Cookie::new("encrypted_with_ring016", "SU1ujceILyMBg3fReqRmA9HUtAIoSPZceOM/CUpObROHEujXIjonkA==")); let private = jar.private(&key); assert_eq!(private.get("encrypted_with_ring014").unwrap().value(), "Tamper-proof"); assert_eq!(private.get("encrypted_with_ring016").unwrap().value(), "Tamper-proof"); } }