//! Fast, SIMD-accelerated CRC32 (IEEE) checksum computation. //! //! ## Usage //! //! ### Simple usage //! //! For simple use-cases, you can call the [`hash()`] convenience function to //! directly compute the CRC32 checksum for a given byte slice: //! //! ```rust //! let checksum = crc32fast::hash(b"foo bar baz"); //! ``` //! //! ### Advanced usage //! //! For use-cases that require more flexibility or performance, for example when //! processing large amounts of data, you can create and manipulate a [`Hasher`]: //! //! ```rust //! use crc32fast::Hasher; //! //! let mut hasher = Hasher::new(); //! hasher.update(b"foo bar baz"); //! let checksum = hasher.finalize(); //! ``` //! //! ## Performance //! //! This crate contains multiple CRC32 implementations: //! //! - A fast baseline implementation which processes up to 16 bytes per iteration //! - An optimized implementation for modern `x86` using `sse` and `pclmulqdq` instructions //! //! Calling the [`Hasher::new`] constructor at runtime will perform a feature detection to select the most //! optimal implementation for the current CPU feature set. #![cfg_attr(not(feature = "std"), no_std)] #![cfg_attr( all(feature = "nightly", target_arch = "aarch64"), feature(stdsimd, aarch64_target_feature) )] #[deny(missing_docs)] #[cfg(test)] #[macro_use] extern crate quickcheck; #[macro_use] extern crate cfg_if; #[cfg(feature = "std")] use std as core; use core::fmt; use core::hash; mod baseline; mod combine; mod specialized; mod table; /// Computes the CRC32 hash of a byte slice. /// /// Check out [`Hasher`] for more advanced use-cases. pub fn hash(buf: &[u8]) -> u32 { let mut h = Hasher::new(); h.update(buf); h.finalize() } #[derive(Clone)] enum State { Baseline(baseline::State), Specialized(specialized::State), } #[derive(Clone)] /// Represents an in-progress CRC32 computation. pub struct Hasher { amount: u64, state: State, } const DEFAULT_INIT_STATE: u32 = 0; impl Hasher { /// Create a new `Hasher`. /// /// This will perform a CPU feature detection at runtime to select the most /// optimal implementation for the current processor architecture. pub fn new() -> Self { Self::new_with_initial(DEFAULT_INIT_STATE) } /// Create a new `Hasher` with an initial CRC32 state. /// /// This works just like `Hasher::new`, except that it allows for an initial /// CRC32 state to be passed in. pub fn new_with_initial(init: u32) -> Self { Self::new_with_initial_len(init, 0) } /// Create a new `Hasher` with an initial CRC32 state. /// /// As `new_with_initial`, but also accepts a length (in bytes). The /// resulting object can then be used with `combine` to compute `crc(a || /// b)` from `crc(a)`, `crc(b)`, and `len(b)`. pub fn new_with_initial_len(init: u32, amount: u64) -> Self { Self::internal_new_specialized(init, amount) .unwrap_or_else(|| Self::internal_new_baseline(init, amount)) } #[doc(hidden)] // Internal-only API. Don't use. pub fn internal_new_baseline(init: u32, amount: u64) -> Self { Hasher { amount, state: State::Baseline(baseline::State::new(init)), } } #[doc(hidden)] // Internal-only API. Don't use. pub fn internal_new_specialized(init: u32, amount: u64) -> Option { { if let Some(state) = specialized::State::new(init) { return Some(Hasher { amount, state: State::Specialized(state), }); } } None } /// Process the given byte slice and update the hash state. pub fn update(&mut self, buf: &[u8]) { self.amount += buf.len() as u64; match self.state { State::Baseline(ref mut state) => state.update(buf), State::Specialized(ref mut state) => state.update(buf), } } /// Finalize the hash state and return the computed CRC32 value. pub fn finalize(self) -> u32 { match self.state { State::Baseline(state) => state.finalize(), State::Specialized(state) => state.finalize(), } } /// Reset the hash state. pub fn reset(&mut self) { self.amount = 0; match self.state { State::Baseline(ref mut state) => state.reset(), State::Specialized(ref mut state) => state.reset(), } } /// Combine the hash state with the hash state for the subsequent block of bytes. pub fn combine(&mut self, other: &Self) { self.amount += other.amount; let other_crc = other.clone().finalize(); match self.state { State::Baseline(ref mut state) => state.combine(other_crc, other.amount), State::Specialized(ref mut state) => state.combine(other_crc, other.amount), } } } impl fmt::Debug for Hasher { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("crc32fast::Hasher").finish() } } impl Default for Hasher { fn default() -> Self { Self::new() } } impl hash::Hasher for Hasher { fn write(&mut self, bytes: &[u8]) { self.update(bytes) } fn finish(&self) -> u64 { u64::from(self.clone().finalize()) } } #[cfg(test)] mod test { use super::Hasher; quickcheck! { fn combine(bytes_1: Vec, bytes_2: Vec) -> bool { let mut hash_a = Hasher::new(); hash_a.update(&bytes_1); hash_a.update(&bytes_2); let mut hash_b = Hasher::new(); hash_b.update(&bytes_2); let mut hash_c = Hasher::new(); hash_c.update(&bytes_1); hash_c.combine(&hash_b); hash_a.finalize() == hash_c.finalize() } fn combine_from_len(bytes_1: Vec, bytes_2: Vec) -> bool { let mut hash_a = Hasher::new(); hash_a.update(&bytes_1); let a = hash_a.finalize(); let mut hash_b = Hasher::new(); hash_b.update(&bytes_2); let b = hash_b.finalize(); let mut hash_ab = Hasher::new(); hash_ab.update(&bytes_1); hash_ab.update(&bytes_2); let ab = hash_ab.finalize(); let mut reconstructed = Hasher::new_with_initial_len(a, bytes_1.len() as u64); let hash_b_reconstructed = Hasher::new_with_initial_len(b, bytes_2.len() as u64); reconstructed.combine(&hash_b_reconstructed); reconstructed.finalize() == ab } } }