#[cfg(target_arch = "x86")] use core::arch::x86 as arch; #[cfg(target_arch = "x86_64")] use core::arch::x86_64 as arch; #[derive(Clone)] pub struct State { state: u32, } impl State { #[cfg(not(feature = "std"))] pub fn new(state: u32) -> Option { if cfg!(target_feature = "pclmulqdq") && cfg!(target_feature = "sse2") && cfg!(target_feature = "sse4.1") { // SAFETY: The conditions above ensure that all // required instructions are supported by the CPU. Some(Self { state }) } else { None } } #[cfg(feature = "std")] pub fn new(state: u32) -> Option { if is_x86_feature_detected!("pclmulqdq") && is_x86_feature_detected!("sse2") && is_x86_feature_detected!("sse4.1") { // SAFETY: The conditions above ensure that all // required instructions are supported by the CPU. Some(Self { state }) } else { None } } pub fn update(&mut self, buf: &[u8]) { // SAFETY: The `State::new` constructor ensures that all // required instructions are supported by the CPU. self.state = unsafe { calculate(self.state, buf) } } pub fn finalize(self) -> u32 { self.state } pub fn reset(&mut self) { self.state = 0; } pub fn combine(&mut self, other: u32, amount: u64) { self.state = ::combine::combine(self.state, other, amount); } } const K1: i64 = 0x154442bd4; const K2: i64 = 0x1c6e41596; const K3: i64 = 0x1751997d0; const K4: i64 = 0x0ccaa009e; const K5: i64 = 0x163cd6124; const K6: i64 = 0x1db710640; const P_X: i64 = 0x1DB710641; const U_PRIME: i64 = 0x1F7011641; #[cfg(feature = "std")] unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i { if false { union A { a: arch::__m128i, b: [u8; 16], } let x = A { a }.b; print!(" {:20} | ", s); for x in x.iter() { print!("{:02x} ", x); } println!(); } return a; } #[cfg(not(feature = "std"))] unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i { a } #[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")] unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 { // In theory we can accelerate smaller chunks too, but for now just rely on // the fallback implementation as it's too much hassle and doesn't seem too // beneficial. if data.len() < 128 { return ::baseline::update_fast_16(crc, data); } // Step 1: fold by 4 loop let mut x3 = get(&mut data); let mut x2 = get(&mut data); let mut x1 = get(&mut data); let mut x0 = get(&mut data); // fold in our initial value, part of the incremental crc checksum x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32)); let k1k2 = arch::_mm_set_epi64x(K2, K1); while data.len() >= 64 { x3 = reduce128(x3, get(&mut data), k1k2); x2 = reduce128(x2, get(&mut data), k1k2); x1 = reduce128(x1, get(&mut data), k1k2); x0 = reduce128(x0, get(&mut data), k1k2); } let k3k4 = arch::_mm_set_epi64x(K4, K3); let mut x = reduce128(x3, x2, k3k4); x = reduce128(x, x1, k3k4); x = reduce128(x, x0, k3k4); // Step 2: fold by 1 loop while data.len() >= 16 { x = reduce128(x, get(&mut data), k3k4); } debug("128 > 64 init", x); // Perform step 3, reduction from 128 bits to 64 bits. This is // significantly different from the paper and basically doesn't follow it // at all. It's not really clear why, but implementations of this algorithm // in Chrome/Linux diverge in the same way. It is beyond me why this is // different than the paper, maybe the paper has like errata or something? // Unclear. // // It's also not clear to me what's actually happening here and/or why, but // algebraically what's happening is: // // x = (x[0:63] • K4) ^ x[64:127] // 96 bit result // x = ((x[0:31] as u64) • K5) ^ x[32:95] // 64 bit result // // It's... not clear to me what's going on here. The paper itself is pretty // vague on this part but definitely uses different constants at least. // It's not clear to me, reading the paper, where the xor operations are // happening or why things are shifting around. This implementation... // appears to work though! drop(K6); let x = arch::_mm_xor_si128( arch::_mm_clmulepi64_si128(x, k3k4, 0x10), arch::_mm_srli_si128(x, 8), ); let x = arch::_mm_xor_si128( arch::_mm_clmulepi64_si128( arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)), arch::_mm_set_epi64x(0, K5), 0x00, ), arch::_mm_srli_si128(x, 4), ); debug("128 > 64 xx", x); // Perform a Barrett reduction from our now 64 bits to 32 bits. The // algorithm for this is described at the end of the paper, and note that // this also implements the "bit reflected input" variant. let pu = arch::_mm_set_epi64x(U_PRIME, P_X); // T1(x) = ⌊(R(x) % x^32)⌋ • μ let t1 = arch::_mm_clmulepi64_si128( arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)), pu, 0x10, ); // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x) let t2 = arch::_mm_clmulepi64_si128( arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)), pu, 0x00, ); // We're doing the bit-reflected variant, so get the upper 32-bits of the // 64-bit result instead of the lower 32-bits. // // C(x) = R(x) ^ T2(x) / x^32 let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32; if !data.is_empty() { ::baseline::update_fast_16(!c, data) } else { !c } } unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i { let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00); let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11); arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2) } unsafe fn get(a: &mut &[u8]) -> arch::__m128i { debug_assert!(a.len() >= 16); let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i); *a = &a[16..]; return r; } #[cfg(test)] mod test { quickcheck! { fn check_against_baseline(init: u32, chunks: Vec<(Vec, usize)>) -> bool { let mut baseline = super::super::super::baseline::State::new(init); let mut pclmulqdq = super::State::new(init).expect("not supported"); for (chunk, mut offset) in chunks { // simulate random alignments by offsetting the slice by up to 15 bytes offset &= 0xF; if chunk.len() <= offset { baseline.update(&chunk); pclmulqdq.update(&chunk); } else { baseline.update(&chunk[offset..]); pclmulqdq.update(&chunk[offset..]); } } pclmulqdq.finalize() == baseline.finalize() } } }