//! The implementation is based on Dmitry Vyukov's bounded MPMC queue. //! //! Source: //! - use alloc::boxed::Box; use core::cell::UnsafeCell; use core::fmt; use core::mem::MaybeUninit; use core::sync::atomic::{self, AtomicUsize, Ordering}; use crossbeam_utils::{Backoff, CachePadded}; /// A slot in a queue. struct Slot { /// The current stamp. /// /// If the stamp equals the tail, this node will be next written to. If it equals head + 1, /// this node will be next read from. stamp: AtomicUsize, /// The value in this slot. value: UnsafeCell>, } /// A bounded multi-producer multi-consumer queue. /// /// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed /// elements. The queue cannot hold more elements than the buffer allows. Attempting to push an /// element into a full queue will fail. Alternatively, [`force_push`] makes it possible for /// this queue to be used as a ring-buffer. Having a buffer allocated upfront makes this queue /// a bit faster than [`SegQueue`]. /// /// [`force_push`]: ArrayQueue::force_push /// [`SegQueue`]: super::SegQueue /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(2); /// /// assert_eq!(q.push('a'), Ok(())); /// assert_eq!(q.push('b'), Ok(())); /// assert_eq!(q.push('c'), Err('c')); /// assert_eq!(q.pop(), Some('a')); /// ``` pub struct ArrayQueue { /// The head of the queue. /// /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. /// /// Elements are popped from the head of the queue. head: CachePadded, /// The tail of the queue. /// /// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a /// single `usize`. The lower bits represent the index, while the upper bits represent the lap. /// /// Elements are pushed into the tail of the queue. tail: CachePadded, /// The buffer holding slots. buffer: Box<[Slot]>, /// The queue capacity. cap: usize, /// A stamp with the value of `{ lap: 1, index: 0 }`. one_lap: usize, } unsafe impl Sync for ArrayQueue {} unsafe impl Send for ArrayQueue {} impl ArrayQueue { /// Creates a new bounded queue with the given capacity. /// /// # Panics /// /// Panics if the capacity is zero. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::::new(100); /// ``` pub fn new(cap: usize) -> ArrayQueue { assert!(cap > 0, "capacity must be non-zero"); // Head is initialized to `{ lap: 0, index: 0 }`. // Tail is initialized to `{ lap: 0, index: 0 }`. let head = 0; let tail = 0; // Allocate a buffer of `cap` slots initialized // with stamps. let buffer: Box<[Slot]> = (0..cap) .map(|i| { // Set the stamp to `{ lap: 0, index: i }`. Slot { stamp: AtomicUsize::new(i), value: UnsafeCell::new(MaybeUninit::uninit()), } }) .collect(); // One lap is the smallest power of two greater than `cap`. let one_lap = (cap + 1).next_power_of_two(); ArrayQueue { buffer, cap, one_lap, head: CachePadded::new(AtomicUsize::new(head)), tail: CachePadded::new(AtomicUsize::new(tail)), } } fn push_or_else(&self, mut value: T, f: F) -> Result<(), T> where F: Fn(T, usize, usize, &Slot) -> Result, { let backoff = Backoff::new(); let mut tail = self.tail.load(Ordering::Relaxed); loop { // Deconstruct the tail. let index = tail & (self.one_lap - 1); let lap = tail & !(self.one_lap - 1); let new_tail = if index + 1 < self.cap { // Same lap, incremented index. // Set to `{ lap: lap, index: index + 1 }`. tail + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. lap.wrapping_add(self.one_lap) }; // Inspect the corresponding slot. debug_assert!(index < self.buffer.len()); let slot = unsafe { self.buffer.get_unchecked(index) }; let stamp = slot.stamp.load(Ordering::Acquire); // If the tail and the stamp match, we may attempt to push. if tail == stamp { // Try moving the tail. match self.tail.compare_exchange_weak( tail, new_tail, Ordering::SeqCst, Ordering::Relaxed, ) { Ok(_) => { // Write the value into the slot and update the stamp. unsafe { slot.value.get().write(MaybeUninit::new(value)); } slot.stamp.store(tail + 1, Ordering::Release); return Ok(()); } Err(t) => { tail = t; backoff.spin(); } } } else if stamp.wrapping_add(self.one_lap) == tail + 1 { atomic::fence(Ordering::SeqCst); value = f(value, tail, new_tail, slot)?; backoff.spin(); tail = self.tail.load(Ordering::Relaxed); } else { // Snooze because we need to wait for the stamp to get updated. backoff.snooze(); tail = self.tail.load(Ordering::Relaxed); } } } /// Attempts to push an element into the queue. /// /// If the queue is full, the element is returned back as an error. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(1); /// /// assert_eq!(q.push(10), Ok(())); /// assert_eq!(q.push(20), Err(20)); /// ``` pub fn push(&self, value: T) -> Result<(), T> { self.push_or_else(value, |v, tail, _, _| { let head = self.head.load(Ordering::Relaxed); // If the head lags one lap behind the tail as well... if head.wrapping_add(self.one_lap) == tail { // ...then the queue is full. Err(v) } else { Ok(v) } }) } /// Pushes an element into the queue, replacing the oldest element if necessary. /// /// If the queue is full, the oldest element is replaced and returned, /// otherwise `None` is returned. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(2); /// /// assert_eq!(q.force_push(10), None); /// assert_eq!(q.force_push(20), None); /// assert_eq!(q.force_push(30), Some(10)); /// assert_eq!(q.pop(), Some(20)); /// ``` pub fn force_push(&self, value: T) -> Option { self.push_or_else(value, |v, tail, new_tail, slot| { let head = tail.wrapping_sub(self.one_lap); let new_head = new_tail.wrapping_sub(self.one_lap); // Try moving the head. if self .head .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Relaxed) .is_ok() { // Move the tail. self.tail.store(new_tail, Ordering::SeqCst); // Swap the previous value. let old = unsafe { slot.value.get().replace(MaybeUninit::new(v)).assume_init() }; // Update the stamp. slot.stamp.store(tail + 1, Ordering::Release); Err(old) } else { Ok(v) } }) .err() } /// Attempts to pop an element from the queue. /// /// If the queue is empty, `None` is returned. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(1); /// assert_eq!(q.push(10), Ok(())); /// /// assert_eq!(q.pop(), Some(10)); /// assert!(q.pop().is_none()); /// ``` pub fn pop(&self) -> Option { let backoff = Backoff::new(); let mut head = self.head.load(Ordering::Relaxed); loop { // Deconstruct the head. let index = head & (self.one_lap - 1); let lap = head & !(self.one_lap - 1); // Inspect the corresponding slot. debug_assert!(index < self.buffer.len()); let slot = unsafe { self.buffer.get_unchecked(index) }; let stamp = slot.stamp.load(Ordering::Acquire); // If the the stamp is ahead of the head by 1, we may attempt to pop. if head + 1 == stamp { let new = if index + 1 < self.cap { // Same lap, incremented index. // Set to `{ lap: lap, index: index + 1 }`. head + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. lap.wrapping_add(self.one_lap) }; // Try moving the head. match self.head.compare_exchange_weak( head, new, Ordering::SeqCst, Ordering::Relaxed, ) { Ok(_) => { // Read the value from the slot and update the stamp. let msg = unsafe { slot.value.get().read().assume_init() }; slot.stamp .store(head.wrapping_add(self.one_lap), Ordering::Release); return Some(msg); } Err(h) => { head = h; backoff.spin(); } } } else if stamp == head { atomic::fence(Ordering::SeqCst); let tail = self.tail.load(Ordering::Relaxed); // If the tail equals the head, that means the channel is empty. if tail == head { return None; } backoff.spin(); head = self.head.load(Ordering::Relaxed); } else { // Snooze because we need to wait for the stamp to get updated. backoff.snooze(); head = self.head.load(Ordering::Relaxed); } } } /// Returns the capacity of the queue. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::::new(100); /// /// assert_eq!(q.capacity(), 100); /// ``` pub fn capacity(&self) -> usize { self.cap } /// Returns `true` if the queue is empty. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(100); /// /// assert!(q.is_empty()); /// q.push(1).unwrap(); /// assert!(!q.is_empty()); /// ``` pub fn is_empty(&self) -> bool { let head = self.head.load(Ordering::SeqCst); let tail = self.tail.load(Ordering::SeqCst); // Is the tail lagging one lap behind head? // Is the tail equal to the head? // // Note: If the head changes just before we load the tail, that means there was a moment // when the channel was not empty, so it is safe to just return `false`. tail == head } /// Returns `true` if the queue is full. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(1); /// /// assert!(!q.is_full()); /// q.push(1).unwrap(); /// assert!(q.is_full()); /// ``` pub fn is_full(&self) -> bool { let tail = self.tail.load(Ordering::SeqCst); let head = self.head.load(Ordering::SeqCst); // Is the head lagging one lap behind tail? // // Note: If the tail changes just before we load the head, that means there was a moment // when the queue was not full, so it is safe to just return `false`. head.wrapping_add(self.one_lap) == tail } /// Returns the number of elements in the queue. /// /// # Examples /// /// ``` /// use crossbeam_queue::ArrayQueue; /// /// let q = ArrayQueue::new(100); /// assert_eq!(q.len(), 0); /// /// q.push(10).unwrap(); /// assert_eq!(q.len(), 1); /// /// q.push(20).unwrap(); /// assert_eq!(q.len(), 2); /// ``` pub fn len(&self) -> usize { loop { // Load the tail, then load the head. let tail = self.tail.load(Ordering::SeqCst); let head = self.head.load(Ordering::SeqCst); // If the tail didn't change, we've got consistent values to work with. if self.tail.load(Ordering::SeqCst) == tail { let hix = head & (self.one_lap - 1); let tix = tail & (self.one_lap - 1); return if hix < tix { tix - hix } else if hix > tix { self.cap - hix + tix } else if tail == head { 0 } else { self.cap }; } } } } impl Drop for ArrayQueue { fn drop(&mut self) { // Get the index of the head. let head = *self.head.get_mut(); let tail = *self.tail.get_mut(); let hix = head & (self.one_lap - 1); let tix = tail & (self.one_lap - 1); let len = if hix < tix { tix - hix } else if hix > tix { self.cap - hix + tix } else if tail == head { 0 } else { self.cap }; // Loop over all slots that hold a message and drop them. for i in 0..len { // Compute the index of the next slot holding a message. let index = if hix + i < self.cap { hix + i } else { hix + i - self.cap }; unsafe { debug_assert!(index < self.buffer.len()); let slot = self.buffer.get_unchecked_mut(index); let value = &mut *slot.value.get(); value.as_mut_ptr().drop_in_place(); } } } } impl fmt::Debug for ArrayQueue { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad("ArrayQueue { .. }") } } impl IntoIterator for ArrayQueue { type Item = T; type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { IntoIter { value: self } } } #[derive(Debug)] pub struct IntoIter { value: ArrayQueue, } impl Iterator for IntoIter { type Item = T; fn next(&mut self) -> Option { let value = &mut self.value; let head = *value.head.get_mut(); if value.head.get_mut() != value.tail.get_mut() { let index = head & (value.one_lap - 1); let lap = head & !(value.one_lap - 1); // SAFETY: We have mutable access to this, so we can read without // worrying about concurrency. Furthermore, we know this is // initialized because it is the value pointed at by `value.head` // and this is a non-empty queue. let val = unsafe { debug_assert!(index < value.buffer.len()); let slot = value.buffer.get_unchecked_mut(index); slot.value.get().read().assume_init() }; let new = if index + 1 < value.cap { // Same lap, incremented index. // Set to `{ lap: lap, index: index + 1 }`. head + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), index: 0 }`. lap.wrapping_add(value.one_lap) }; *value.head.get_mut() = new; Option::Some(val) } else { Option::None } } }