// Copyright Mozilla Foundation. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // It's assumed that in due course Rust will have explicit SIMD but will not // be good at run-time selection of SIMD vs. no-SIMD. In such a future, // x86_64 will always use SSE2 and 32-bit x86 will use SSE2 when compiled with // a Mozilla-shipped rustc. SIMD support and especially detection on ARM is a // mess. Under the circumstances, it seems to make sense to optimize the ALU // case for ARMv7 rather than x86. Annoyingly, I was unable to get useful // numbers of the actual ARMv7 CPU I have access to, because (thermal?) // throttling kept interfering. Since Raspberry Pi 3 (ARMv8 core but running // ARMv7 code) produced reproducible performance numbers, that's the ARM // computer that this code ended up being optimized for in the ALU case. // Less popular CPU architectures simply get the approach that was chosen based // on Raspberry Pi 3 measurements. The UTF-16 and UTF-8 ALU cases take // different approaches based on benchmarking on Raspberry Pi 3. #[cfg(all( feature = "simd-accel", any( target_feature = "sse2", all(target_endian = "little", target_arch = "aarch64"), all(target_endian = "little", target_feature = "neon") ) ))] use crate::simd_funcs::*; cfg_if! { if #[cfg(feature = "simd-accel")] { #[allow(unused_imports)] use ::core::intrinsics::unlikely; #[allow(unused_imports)] use ::core::intrinsics::likely; } else { #[allow(dead_code)] #[inline(always)] fn unlikely(b: bool) -> bool { b } #[allow(dead_code)] #[inline(always)] fn likely(b: bool) -> bool { b } } } // `as` truncates, so works on 32-bit, too. #[allow(dead_code)] pub const ASCII_MASK: usize = 0x8080_8080_8080_8080u64 as usize; // `as` truncates, so works on 32-bit, too. #[allow(dead_code)] pub const BASIC_LATIN_MASK: usize = 0xFF80_FF80_FF80_FF80u64 as usize; #[allow(unused_macros)] macro_rules! ascii_naive { ($name:ident, $src_unit:ty, $dst_unit:ty) => { #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { // Yes, manually omitting the bound check here matters // a lot for perf. for i in 0..len { let code_unit = *(src.add(i)); if code_unit > 127 { return Some((code_unit, i)); } *(dst.add(i)) = code_unit as $dst_unit; } return None; } }; } #[allow(unused_macros)] macro_rules! ascii_alu { ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => { #[cfg_attr(feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment))] #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; // This loop is only broken out of as a `goto` forward loop { let mut until_alignment = { // Check if the other unit aligns if we move the narrower unit // to alignment. // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { // ascii_to_ascii let src_alignment = (src as usize) & ALU_ALIGNMENT_MASK; let dst_alignment = (dst as usize) & ALU_ALIGNMENT_MASK; if src_alignment != dst_alignment { break; } (ALU_ALIGNMENT - src_alignment) & ALU_ALIGNMENT_MASK // } else if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { // ascii_to_basic_latin // let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; // if (dst.add(src_until_alignment) as usize) & ALIGNMENT_MASK != 0 { // break; // } // src_until_alignment // } else { // basic_latin_to_ascii // let dst_until_alignment = (ALIGNMENT - ((dst as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; // if (src.add(dst_until_alignment) as usize) & ALIGNMENT_MASK != 0 { // break; // } // dst_until_alignment // } }; if until_alignment + ALU_STRIDE_SIZE <= len { // Moving pointers to alignment seems to be a pessimization on // x86_64 for operations that have UTF-16 as the internal // Unicode representation. However, since it seems to be a win // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except // mixed results when encoding from UTF-16 and since x86 and // x86_64 should be using SSE2 in due course, keeping the move // to alignment here. It would be good to test on more ARM CPUs // and on real MIPS and POWER hardware. while until_alignment != 0 { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { if let Some(num_ascii) = $stride_fn( src.add(offset) as *const usize, dst.add(offset) as *mut usize, ) { offset += num_ascii; return Some((*(src.add(offset)), offset)); } offset += ALU_STRIDE_SIZE; if offset > len_minus_stride { break; } } } break; } while offset < len { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! basic_latin_alu { ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => { #[cfg_attr( feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment, cast_lossless) )] #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; // This loop is only broken out of as a `goto` forward loop { let mut until_alignment = { // Check if the other unit aligns if we move the narrower unit // to alignment. // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { // ascii_to_ascii // let src_alignment = (src as usize) & ALIGNMENT_MASK; // let dst_alignment = (dst as usize) & ALIGNMENT_MASK; // if src_alignment != dst_alignment { // break; // } // (ALIGNMENT - src_alignment) & ALIGNMENT_MASK // } else if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { // ascii_to_basic_latin let src_until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK != 0 { break; } src_until_alignment } else { // basic_latin_to_ascii let dst_until_alignment = (ALU_ALIGNMENT - ((dst as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; if (src.wrapping_add(dst_until_alignment) as usize) & ALU_ALIGNMENT_MASK != 0 { break; } dst_until_alignment } }; if until_alignment + ALU_STRIDE_SIZE <= len { // Moving pointers to alignment seems to be a pessimization on // x86_64 for operations that have UTF-16 as the internal // Unicode representation. However, since it seems to be a win // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except // mixed results when encoding from UTF-16 and since x86 and // x86_64 should be using SSE2 in due course, keeping the move // to alignment here. It would be good to test on more ARM CPUs // and on real MIPS and POWER hardware. while until_alignment != 0 { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { if !$stride_fn( src.add(offset) as *const usize, dst.add(offset) as *mut usize, ) { break; } offset += ALU_STRIDE_SIZE; if offset > len_minus_stride { break; } } } break; } while offset < len { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! latin1_alu { ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => { #[cfg_attr( feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment, cast_lossless) )] #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let mut offset = 0usize; // This loop is only broken out of as a `goto` forward loop { let mut until_alignment = { if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { // unpack let src_until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK != 0 { break; } src_until_alignment } else { // pack let dst_until_alignment = (ALU_ALIGNMENT - ((dst as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; if (src.wrapping_add(dst_until_alignment) as usize) & ALU_ALIGNMENT_MASK != 0 { break; } dst_until_alignment } }; if until_alignment + ALU_STRIDE_SIZE <= len { while until_alignment != 0 { let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { $stride_fn( src.add(offset) as *const usize, dst.add(offset) as *mut usize, ); offset += ALU_STRIDE_SIZE; if offset > len_minus_stride { break; } } } break; } while offset < len { let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! ascii_simd_check_align { ( $name:ident, $src_unit:ty, $dst_unit:ty, $stride_both_aligned:ident, $stride_src_aligned:ident, $stride_dst_aligned:ident, $stride_neither_aligned:ident ) => { #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; // XXX Should we first process one stride unconditionally as unaligned to // avoid the cost of the branchiness below if the first stride fails anyway? // XXX Should we just use unaligned SSE2 access unconditionally? It seems that // on Haswell, it would make sense to just use unaligned and not bother // checking. Need to benchmark older architectures before deciding. let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { if dst_masked == 0 { loop { if !$stride_both_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } else { loop { if !$stride_src_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } } else { if dst_masked == 0 { loop { if !$stride_dst_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } else { loop { if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } } } while offset < len { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! ascii_simd_check_align_unrolled { ( $name:ident, $src_unit:ty, $dst_unit:ty, $stride_both_aligned:ident, $stride_src_aligned:ident, $stride_neither_aligned:ident, $double_stride_both_aligned:ident, $double_stride_src_aligned:ident ) => { #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let unit_size = ::core::mem::size_of::<$src_unit>(); let mut offset = 0usize; // This loop is only broken out of as a goto forward without // actually looping 'outer: loop { if SIMD_STRIDE_SIZE <= len { // First, process one unaligned if !$stride_neither_aligned(src, dst) { break 'outer; } offset = SIMD_STRIDE_SIZE; // We have now seen 16 ASCII bytes. Let's guess that // there will be enough more to justify more expense // in the case of non-ASCII. // Use aligned reads for the sake of old microachitectures. let until_alignment = ((SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK) / unit_size; // This addition won't overflow, because even in the 32-bit PAE case the // address space holds enough code that the slice length can't be that // close to address space size. // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { if until_alignment != 0 { if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += until_alignment; } let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); let dst_masked = (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK; if dst_masked == 0 { loop { if let Some(advance) = $double_stride_both_aligned(src.add(offset), dst.add(offset)) { offset += advance; let code_unit = *(src.add(offset)); return Some((code_unit, offset)); } offset += SIMD_STRIDE_SIZE * 2; if offset > len_minus_stride_times_two { break; } } if offset + SIMD_STRIDE_SIZE <= len { if !$stride_both_aligned(src.add(offset), dst.add(offset)) { break 'outer; } offset += SIMD_STRIDE_SIZE; } } else { loop { if let Some(advance) = $double_stride_src_aligned(src.add(offset), dst.add(offset)) { offset += advance; let code_unit = *(src.add(offset)); return Some((code_unit, offset)); } offset += SIMD_STRIDE_SIZE * 2; if offset > len_minus_stride_times_two { break; } } if offset + SIMD_STRIDE_SIZE <= len { if !$stride_src_aligned(src.add(offset), dst.add(offset)) { break 'outer; } offset += SIMD_STRIDE_SIZE; } } } else { // At most two iterations, so unroll if offset + SIMD_STRIDE_SIZE <= len { if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset + SIMD_STRIDE_SIZE <= len { if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; } } } } break 'outer; } while offset < len { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! latin1_simd_check_align { ( $name:ident, $src_unit:ty, $dst_unit:ty, $stride_both_aligned:ident, $stride_src_aligned:ident, $stride_dst_aligned:ident, $stride_neither_aligned:ident ) => { #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { if dst_masked == 0 { loop { $stride_both_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } else { loop { $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } } else { if dst_masked == 0 { loop { $stride_dst_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } else { loop { $stride_neither_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } } } while offset < len { let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! latin1_simd_check_align_unrolled { ( $name:ident, $src_unit:ty, $dst_unit:ty, $stride_both_aligned:ident, $stride_src_aligned:ident, $stride_dst_aligned:ident, $stride_neither_aligned:ident ) => { #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let unit_size = ::core::mem::size_of::<$src_unit>(); let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { let mut until_alignment = ((SIMD_STRIDE_SIZE - ((src as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK) / unit_size; while until_alignment != 0 { *(dst.add(offset)) = *(src.add(offset)) as $dst_unit; offset += 1; until_alignment -= 1; } let len_minus_stride = len - SIMD_STRIDE_SIZE; if offset + SIMD_STRIDE_SIZE * 2 <= len { let len_minus_stride_times_two = len_minus_stride - SIMD_STRIDE_SIZE; if (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK == 0 { loop { $stride_both_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; $stride_both_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride_times_two { break; } } } else { loop { $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride_times_two { break; } } } } if offset < len_minus_stride { $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; } } while offset < len { let code_unit = *(src.add(offset)); // On x86_64, this loop autovectorizes but in the pack // case there are instructions whose purpose is to make sure // each u16 in the vector is truncated before packing. However, // since we don't care about saturating behavior of SSE2 packing // when the input isn't Latin1, those instructions are useless. // Unfortunately, using the `assume` intrinsic to lie to the // optimizer doesn't make LLVM omit the trunctation that we // don't need. Possibly this loop could be manually optimized // to do the sort of thing that LLVM does but without the // ANDing the read vectors of u16 with a constant that discards // the high half of each u16. As far as I can tell, the // optimization assumes that doing a SIMD read past the end of // the array is OK. *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! ascii_simd_unalign { ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } while offset < len { let code_unit = *(src.add(offset)); if code_unit > 127 { return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! latin1_simd_unalign { ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { $stride_neither_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } while offset < len { let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! ascii_to_ascii_simd_stride { ($name:ident, $load:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u8) -> bool { let simd = $load(src); if !simd_is_ascii(simd) { return false; } $store(dst, simd); true } }; } #[allow(unused_macros)] macro_rules! ascii_to_ascii_simd_double_stride { ($name:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u8) -> Option { let first = load16_aligned(src); let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); $store(dst, first); if unlikely(!simd_is_ascii(first | second)) { let mask_first = mask_ascii(first); if mask_first != 0 { return Some(mask_first.trailing_zeros() as usize); } $store(dst.add(SIMD_STRIDE_SIZE), second); let mask_second = mask_ascii(second); return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); } $store(dst.add(SIMD_STRIDE_SIZE), second); None } }; } #[allow(unused_macros)] macro_rules! ascii_to_basic_latin_simd_stride { ($name:ident, $load:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u16) -> bool { let simd = $load(src); if !simd_is_ascii(simd) { return false; } let (first, second) = simd_unpack(simd); $store(dst, first); $store(dst.add(8), second); true } }; } #[allow(unused_macros)] macro_rules! ascii_to_basic_latin_simd_double_stride { ($name:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u16) -> Option { let first = load16_aligned(src); let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); let (a, b) = simd_unpack(first); $store(dst, a); $store(dst.add(SIMD_STRIDE_SIZE / 2), b); if unlikely(!simd_is_ascii(first | second)) { let mask_first = mask_ascii(first); if mask_first != 0 { return Some(mask_first.trailing_zeros() as usize); } let (c, d) = simd_unpack(second); $store(dst.add(SIMD_STRIDE_SIZE), c); $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); let mask_second = mask_ascii(second); return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); } let (c, d) = simd_unpack(second); $store(dst.add(SIMD_STRIDE_SIZE), c); $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); None } }; } #[allow(unused_macros)] macro_rules! unpack_simd_stride { ($name:ident, $load:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u16) { let simd = $load(src); let (first, second) = simd_unpack(simd); $store(dst, first); $store(dst.add(8), second); } }; } #[allow(unused_macros)] macro_rules! basic_latin_to_ascii_simd_stride { ($name:ident, $load:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u16, dst: *mut u8) -> bool { let first = $load(src); let second = $load(src.add(8)); if simd_is_basic_latin(first | second) { $store(dst, simd_pack(first, second)); true } else { false } } }; } #[allow(unused_macros)] macro_rules! pack_simd_stride { ($name:ident, $load:ident, $store:ident) => { #[inline(always)] pub unsafe fn $name(src: *const u16, dst: *mut u8) { let first = $load(src); let second = $load(src.add(8)); $store(dst, simd_pack(first, second)); } }; } cfg_if! { if #[cfg(all(feature = "simd-accel", target_endian = "little", target_arch = "aarch64"))] { // SIMD with the same instructions for aligned and unaligned loads and stores pub const SIMD_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; // pub const ALIGNMENT: usize = 8; pub const ALU_STRIDE_SIZE: usize = 16; pub const ALU_ALIGNMENT: usize = 8; pub const ALU_ALIGNMENT_MASK: usize = 7; ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); ascii_simd_unalign!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_neither_aligned); ascii_simd_unalign!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_neither_aligned); ascii_simd_unalign!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_neither_aligned); latin1_simd_unalign!(unpack_latin1, u8, u16, unpack_stride_neither_aligned); latin1_simd_unalign!(pack_latin1, u16, u8, pack_stride_neither_aligned); } else if #[cfg(all(feature = "simd-accel", target_endian = "little", target_feature = "neon"))] { // SIMD with different instructions for aligned and unaligned loads and stores. // // Newer microarchitectures are not supposed to have a performance difference between // aligned and unaligned SSE2 loads and stores when the address is actually aligned, // but the benchmark results I see don't agree. pub const SIMD_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; pub const SIMD_ALIGNMENT_MASK: usize = 15; ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_dst_aligned, load16_unaligned, store16_aligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_dst_aligned, load16_unaligned, store8_aligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); unpack_simd_stride!(unpack_stride_both_aligned, load16_aligned, store8_aligned); unpack_simd_stride!(unpack_stride_src_aligned, load16_aligned, store8_unaligned); unpack_simd_stride!(unpack_stride_dst_aligned, load16_unaligned, store8_aligned); unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); pack_simd_stride!(pack_stride_dst_aligned, load8_unaligned, store16_aligned); pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); ascii_simd_check_align!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_dst_aligned, ascii_to_ascii_stride_neither_aligned); ascii_simd_check_align!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_dst_aligned, ascii_to_basic_latin_stride_neither_aligned); ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); latin1_simd_check_align!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); latin1_simd_check_align!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); } else if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] { // SIMD with different instructions for aligned and unaligned loads and stores. // // Newer microarchitectures are not supposed to have a performance difference between // aligned and unaligned SSE2 loads and stores when the address is actually aligned, // but the benchmark results I see don't agree. pub const SIMD_STRIDE_SIZE: usize = 16; pub const SIMD_ALIGNMENT: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; pub const SIMD_ALIGNMENT_MASK: usize = 15; ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_both_aligned, store16_aligned); ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_src_aligned, store16_unaligned); ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_both_aligned, store8_aligned); ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_src_aligned, store8_unaligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); unpack_simd_stride!(unpack_stride_both_aligned, load16_aligned, store8_aligned); unpack_simd_stride!(unpack_stride_src_aligned, load16_aligned, store8_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); ascii_simd_check_align_unrolled!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_neither_aligned, ascii_to_ascii_simd_double_stride_both_aligned, ascii_to_ascii_simd_double_stride_src_aligned); ascii_simd_check_align_unrolled!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_neither_aligned, ascii_to_basic_latin_simd_double_stride_both_aligned, ascii_to_basic_latin_simd_double_stride_src_aligned); ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); latin1_simd_check_align_unrolled!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); latin1_simd_check_align_unrolled!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); } else if #[cfg(all(target_endian = "little", target_pointer_width = "64"))] { // Aligned ALU word, little-endian, 64-bit pub const ALU_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; pub const ALU_ALIGNMENT: usize = 8; pub const ALU_ALIGNMENT_MASK: usize = 7; #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0x0000_0000_FF00_0000usize & word) << 24) | ((0x0000_0000_00FF_0000usize & word) << 16) | ((0x0000_0000_0000_FF00usize & word) << 8) | (0x0000_0000_0000_00FFusize & word); let second = ((0xFF00_0000_0000_0000usize & word) >> 8) | ((0x00FF_0000_0000_0000usize & word) >> 16) | ((0x0000_FF00_0000_0000usize & word) >> 24) | ((0x0000_00FF_0000_0000usize & word) >> 32); let third = ((0x0000_0000_FF00_0000usize & second_word) << 24) | ((0x0000_0000_00FF_0000usize & second_word) << 16) | ((0x0000_0000_0000_FF00usize & second_word) << 8) | (0x0000_0000_0000_00FFusize & second_word); let fourth = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | ((0x0000_00FF_0000_0000usize & second_word) >> 32); *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF_0000_0000_0000usize & second) << 8) | ((0x0000_00FF_0000_0000usize & second) << 16) | ((0x0000_0000_00FF_0000usize & second) << 24) | ((0x0000_0000_0000_00FFusize & second) << 32) | ((0x00FF_0000_0000_0000usize & first) >> 24) | ((0x0000_00FF_0000_0000usize & first) >> 16) | ((0x0000_0000_00FF_0000usize & first) >> 8) | (0x0000_0000_0000_00FFusize & first); let second_word = ((0x00FF_0000_0000_0000usize & fourth) << 8) | ((0x0000_00FF_0000_0000usize & fourth) << 16) | ((0x0000_0000_00FF_0000usize & fourth) << 24) | ((0x0000_0000_0000_00FFusize & fourth) << 32) | ((0x00FF_0000_0000_0000usize & third) >> 24) | ((0x0000_00FF_0000_0000usize & third) >> 16) | ((0x0000_0000_00FF_0000usize & third) >> 8) | (0x0000_0000_0000_00FFusize & third); *dst = word; *(dst.add(1)) = second_word; } } else if #[cfg(all(target_endian = "little", target_pointer_width = "32"))] { // Aligned ALU word, little-endian, 32-bit pub const ALU_STRIDE_SIZE: usize = 8; pub const MAX_STRIDE_SIZE: usize = 8; pub const ALU_ALIGNMENT: usize = 4; pub const ALU_ALIGNMENT_MASK: usize = 3; #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0x0000_FF00usize & word) << 8) | (0x0000_00FFusize & word); let second = ((0xFF00_0000usize & word) >> 8) | ((0x00FF_0000usize & word) >> 16); let third = ((0x0000_FF00usize & second_word) << 8) | (0x0000_00FFusize & second_word); let fourth = ((0xFF00_0000usize & second_word) >> 8) | ((0x00FF_0000usize & second_word) >> 16); *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF_0000usize & second) << 8) | ((0x0000_00FFusize & second) << 16) | ((0x00FF_0000usize & first) >> 8) | (0x0000_00FFusize & first); let second_word = ((0x00FF_0000usize & fourth) << 8) | ((0x0000_00FFusize & fourth) << 16) | ((0x00FF_0000usize & third) >> 8) | (0x0000_00FFusize & third); *dst = word; *(dst.add(1)) = second_word; } } else if #[cfg(all(target_endian = "big", target_pointer_width = "64"))] { // Aligned ALU word, big-endian, 64-bit pub const ALU_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; pub const ALU_ALIGNMENT: usize = 8; pub const ALU_ALIGNMENT_MASK: usize = 7; #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0xFF00_0000_0000_0000usize & word) >> 8) | ((0x00FF_0000_0000_0000usize & word) >> 16) | ((0x0000_FF00_0000_0000usize & word) >> 24) | ((0x0000_00FF_0000_0000usize & word) >> 32); let second = ((0x0000_0000_FF00_0000usize & word) << 24) | ((0x0000_0000_00FF_0000usize & word) << 16) | ((0x0000_0000_0000_FF00usize & word) << 8) | (0x0000_0000_0000_00FFusize & word); let third = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | ((0x0000_00FF_0000_0000usize & second_word) >> 32); let fourth = ((0x0000_0000_FF00_0000usize & second_word) << 24) | ((0x0000_0000_00FF_0000usize & second_word) << 16) | ((0x0000_0000_0000_FF00usize & second_word) << 8) | (0x0000_0000_0000_00FFusize & second_word); *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF0000_00000000usize & first) << 8) | ((0x000000FF_00000000usize & first) << 16) | ((0x00000000_00FF0000usize & first) << 24) | ((0x00000000_000000FFusize & first) << 32) | ((0x00FF0000_00000000usize & second) >> 24) | ((0x000000FF_00000000usize & second) >> 16) | ((0x00000000_00FF0000usize & second) >> 8) | (0x00000000_000000FFusize & second); let second_word = ((0x00FF0000_00000000usize & third) << 8) | ((0x000000FF_00000000usize & third) << 16) | ((0x00000000_00FF0000usize & third) << 24) | ((0x00000000_000000FFusize & third) << 32) | ((0x00FF0000_00000000usize & fourth) >> 24) | ((0x000000FF_00000000usize & fourth) >> 16) | ((0x00000000_00FF0000usize & fourth) >> 8) | (0x00000000_000000FFusize & fourth); *dst = word; *(dst.add(1)) = second_word; } } else if #[cfg(all(target_endian = "big", target_pointer_width = "32"))] { // Aligned ALU word, big-endian, 32-bit pub const ALU_STRIDE_SIZE: usize = 8; pub const MAX_STRIDE_SIZE: usize = 8; pub const ALU_ALIGNMENT: usize = 4; pub const ALU_ALIGNMENT_MASK: usize = 3; #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0xFF00_0000usize & word) >> 8) | ((0x00FF_0000usize & word) >> 16); let second = ((0x0000_FF00usize & word) << 8) | (0x0000_00FFusize & word); let third = ((0xFF00_0000usize & second_word) >> 8) | ((0x00FF_0000usize & second_word) >> 16); let fourth = ((0x0000_FF00usize & second_word) << 8) | (0x0000_00FFusize & second_word); *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF_0000usize & first) << 8) | ((0x0000_00FFusize & first) << 16) | ((0x00FF_0000usize & second) >> 8) | (0x0000_00FFusize & second); let second_word = ((0x00FF_0000usize & third) << 8) | ((0x0000_00FFusize & third) << 16) | ((0x00FF_0000usize & fourth) >> 8) | (0x0000_00FFusize & fourth); *dst = word; *(dst.add(1)) = second_word; } } else { ascii_naive!(ascii_to_ascii, u8, u8); ascii_naive!(ascii_to_basic_latin, u8, u16); ascii_naive!(basic_latin_to_ascii, u16, u8); } } cfg_if! { if #[cfg(target_endian = "little")] { #[allow(dead_code)] #[inline(always)] fn count_zeros(word: usize) -> u32 { word.trailing_zeros() } } else { #[allow(dead_code)] #[inline(always)] fn count_zeros(word: usize) -> u32 { word.leading_zeros() } } } cfg_if! { if #[cfg(all(feature = "simd-accel", target_endian = "little", target_arch = "disabled"))] { #[inline(always)] pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { let src = slice.as_ptr(); let len = slice.len(); let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { let simd = unsafe { load16_unaligned(src.add(offset)) }; if !simd_is_ascii(simd) { break; } offset += SIMD_STRIDE_SIZE; if offset > len_minus_stride { break; } } } while offset < len { let code_unit = slice[offset]; if code_unit > 127 { return Some((code_unit, offset)); } offset += 1; } None } } else if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] { #[inline(always)] pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { let src = slice.as_ptr(); let len = slice.len(); let mut offset = 0usize; if SIMD_STRIDE_SIZE <= len { // First, process one unaligned vector let simd = unsafe { load16_unaligned(src) }; let mask = mask_ascii(simd); if mask != 0 { offset = mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset = SIMD_STRIDE_SIZE; // We have now seen 16 ASCII bytes. Let's guess that // there will be enough more to justify more expense // in the case of non-ASCII. // Use aligned reads for the sake of old microachitectures. let until_alignment = unsafe { (SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK }; // This addition won't overflow, because even in the 32-bit PAE case the // address space holds enough code that the slice length can't be that // close to address space size. // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { if until_alignment != 0 { let simd = unsafe { load16_unaligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset += until_alignment; } let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); loop { let first = unsafe { load16_aligned(src.add(offset)) }; let second = unsafe { load16_aligned(src.add(offset + SIMD_STRIDE_SIZE)) }; if !simd_is_ascii(first | second) { let mask_first = mask_ascii(first); if mask_first != 0 { offset += mask_first.trailing_zeros() as usize; } else { let mask_second = mask_ascii(second); offset += SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize; } let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE * 2; if offset > len_minus_stride_times_two { break; } } if offset + SIMD_STRIDE_SIZE <= len { let simd = unsafe { load16_aligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE; } } else { // At most two iterations, so unroll if offset + SIMD_STRIDE_SIZE <= len { let simd = unsafe { load16_unaligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE; if offset + SIMD_STRIDE_SIZE <= len { let simd = unsafe { load16_unaligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE; } } } } while offset < len { let code_unit = unsafe { *(src.add(offset)) }; if code_unit > 127 { return Some((code_unit, offset)); } offset += 1; } None } } else { #[inline(always)] fn find_non_ascii(word: usize, second_word: usize) -> Option { let word_masked = word & ASCII_MASK; let second_masked = second_word & ASCII_MASK; if (word_masked | second_masked) == 0 { return None; } if word_masked != 0 { let zeros = count_zeros(word_masked); // `zeros` now contains 7 (for the seven bits of non-ASCII) // plus 8 times the number of ASCII in text order before the // non-ASCII byte in the little-endian case or 8 times the number of ASCII in // text order before the non-ASCII byte in the big-endian case. let num_ascii = (zeros >> 3) as usize; return Some(num_ascii); } let zeros = count_zeros(second_masked); // `zeros` now contains 7 (for the seven bits of non-ASCII) // plus 8 times the number of ASCII in text order before the // non-ASCII byte in the little-endian case or 8 times the number of ASCII in // text order before the non-ASCII byte in the big-endian case. let num_ascii = (zeros >> 3) as usize; Some(ALU_ALIGNMENT + num_ascii) } #[inline(always)] unsafe fn validate_ascii_stride(src: *const usize) -> Option { let word = *src; let second_word = *(src.add(1)); find_non_ascii(word, second_word) } #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] #[inline(always)] pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { let src = slice.as_ptr(); let len = slice.len(); let mut offset = 0usize; let mut until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; if until_alignment + ALU_STRIDE_SIZE <= len { while until_alignment != 0 { let code_unit = slice[offset]; if code_unit > 127 { return Some((code_unit, offset)); } offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { let ptr = unsafe { src.add(offset) as *const usize }; if let Some(num_ascii) = unsafe { validate_ascii_stride(ptr) } { offset += num_ascii; return Some((unsafe { *(src.add(offset)) }, offset)); } offset += ALU_STRIDE_SIZE; if offset > len_minus_stride { break; } } } while offset < len { let code_unit = slice[offset]; if code_unit > 127 { return Some((code_unit, offset)); } offset += 1; } None } } } cfg_if! { if #[cfg(all(feature = "simd-accel", any(target_feature = "sse2", all(target_endian = "little", target_arch = "aarch64"))))] { } else if #[cfg(all(feature = "simd-accel", target_endian = "little", target_feature = "neon"))] { // Even with NEON enabled, we use the ALU path for ASCII validation, because testing // on Exynos 5 indicated that using NEON isn't worthwhile where there are only // vector reads without vector writes. pub const ALU_STRIDE_SIZE: usize = 8; pub const ALU_ALIGNMENT: usize = 4; pub const ALU_ALIGNMENT_MASK: usize = 3; } else { #[inline(always)] unsafe fn unpack_latin1_stride_alu(src: *const usize, dst: *mut usize) { let word = *src; let second_word = *(src.add(1)); unpack_alu(word, second_word, dst); } #[inline(always)] unsafe fn pack_latin1_stride_alu(src: *const usize, dst: *mut usize) { let first = *src; let second = *(src.add(1)); let third = *(src.add(2)); let fourth = *(src.add(3)); pack_alu(first, second, third, fourth, dst); } #[inline(always)] unsafe fn ascii_to_basic_latin_stride_alu(src: *const usize, dst: *mut usize) -> bool { let word = *src; let second_word = *(src.add(1)); // Check if the words contains non-ASCII if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 { return false; } unpack_alu(word, second_word, dst); true } #[inline(always)] unsafe fn basic_latin_to_ascii_stride_alu(src: *const usize, dst: *mut usize) -> bool { let first = *src; let second = *(src.add(1)); let third = *(src.add(2)); let fourth = *(src.add(3)); if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 { return false; } pack_alu(first, second, third, fourth, dst); true } #[inline(always)] unsafe fn ascii_to_ascii_stride(src: *const usize, dst: *mut usize) -> Option { let word = *src; let second_word = *(src.add(1)); *dst = word; *(dst.add(1)) = second_word; find_non_ascii(word, second_word) } basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_alu); basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_alu); latin1_alu!(unpack_latin1, u8, u16, unpack_latin1_stride_alu); latin1_alu!(pack_latin1, u16, u8, pack_latin1_stride_alu); ascii_alu!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride); } } pub fn ascii_valid_up_to(bytes: &[u8]) -> usize { match validate_ascii(bytes) { None => bytes.len(), Some((_, num_valid)) => num_valid, } } pub fn iso_2022_jp_ascii_valid_up_to(bytes: &[u8]) -> usize { for (i, b_ref) in bytes.iter().enumerate() { let b = *b_ref; if b >= 0x80 || b == 0x1B || b == 0x0E || b == 0x0F { return i; } } bytes.len() } // Any copyright to the test code below this comment is dedicated to the // Public Domain. http://creativecommons.org/publicdomain/zero/1.0/ #[cfg(all(test, feature = "alloc"))] mod tests { use super::*; use alloc::vec::Vec; macro_rules! test_ascii { ($test_name:ident, $fn_tested:ident, $src_unit:ty, $dst_unit:ty) => { #[test] fn $test_name() { let mut src: Vec<$src_unit> = Vec::with_capacity(32); let mut dst: Vec<$dst_unit> = Vec::with_capacity(32); for i in 0..32 { src.clear(); dst.clear(); dst.resize(32, 0); for j in 0..32 { let c = if i == j { 0xAA } else { j + 0x40 }; src.push(c as $src_unit); } match unsafe { $fn_tested(src.as_ptr(), dst.as_mut_ptr(), 32) } { None => unreachable!("Should always find non-ASCII"), Some((non_ascii, num_ascii)) => { assert_eq!(non_ascii, 0xAA); assert_eq!(num_ascii, i); for j in 0..i { assert_eq!(dst[j], (j + 0x40) as $dst_unit); } } } } } }; } test_ascii!(test_ascii_to_ascii, ascii_to_ascii, u8, u8); test_ascii!(test_ascii_to_basic_latin, ascii_to_basic_latin, u8, u16); test_ascii!(test_basic_latin_to_ascii, basic_latin_to_ascii, u16, u8); }