// Copyright Mozilla Foundation. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::*; use crate::ascii::*; use crate::data::position; use crate::handles::*; use crate::variant::*; pub struct SingleByteDecoder { table: &'static [u16; 128], } impl SingleByteDecoder { pub fn new(data: &'static [u16; 128]) -> VariantDecoder { VariantDecoder::SingleByte(SingleByteDecoder { table: data }) } pub fn max_utf16_buffer_length(&self, byte_length: usize) -> Option { Some(byte_length) } pub fn max_utf8_buffer_length_without_replacement(&self, byte_length: usize) -> Option { byte_length.checked_mul(3) } pub fn max_utf8_buffer_length(&self, byte_length: usize) -> Option { byte_length.checked_mul(3) } pub fn decode_to_utf8_raw( &mut self, src: &[u8], dst: &mut [u8], _last: bool, ) -> (DecoderResult, usize, usize) { let mut source = ByteSource::new(src); let mut dest = Utf8Destination::new(dst); 'outermost: loop { match dest.copy_ascii_from_check_space_bmp(&mut source) { CopyAsciiResult::Stop(ret) => return ret, CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop { // Start non-boilerplate // // Since the non-ASCIIness of `non_ascii` is hidden from // the optimizer, it can't figure out that it's OK to // statically omit the bound check when accessing // `[u16; 128]` with an index // `non_ascii as usize - 0x80usize`. let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; // let mapped = self.table[non_ascii as usize - 0x80usize]; if mapped == 0u16 { return ( DecoderResult::Malformed(1, 0), source.consumed(), handle.written(), ); } let dest_again = handle.write_bmp_excl_ascii(mapped); // End non-boilerplate match source.check_available() { Space::Full(src_consumed) => { return ( DecoderResult::InputEmpty, src_consumed, dest_again.written(), ); } Space::Available(source_handle) => { match dest_again.check_space_bmp() { Space::Full(dst_written) => { return ( DecoderResult::OutputFull, source_handle.consumed(), dst_written, ); } Space::Available(mut destination_handle) => { let (mut b, unread_handle) = source_handle.read(); let source_again = unread_handle.commit(); 'innermost: loop { if b > 127 { non_ascii = b; handle = destination_handle; continue 'middle; } // Testing on Haswell says that we should write the // byte unconditionally instead of trying to unread it // to make it part of the next SIMD stride. let dest_again_again = destination_handle.write_ascii(b); if b < 60 { // We've got punctuation match source_again.check_available() { Space::Full(src_consumed_again) => { return ( DecoderResult::InputEmpty, src_consumed_again, dest_again_again.written(), ); } Space::Available(source_handle_again) => { match dest_again_again.check_space_bmp() { Space::Full(dst_written_again) => { return ( DecoderResult::OutputFull, source_handle_again.consumed(), dst_written_again, ); } Space::Available( destination_handle_again, ) => { let (b_again, _unread_handle_again) = source_handle_again.read(); b = b_again; destination_handle = destination_handle_again; continue 'innermost; } } } } } // We've got markup or ASCII text continue 'outermost; } } } } } }, } } } pub fn decode_to_utf16_raw( &mut self, src: &[u8], dst: &mut [u16], _last: bool, ) -> (DecoderResult, usize, usize) { let (pending, length) = if dst.len() < src.len() { (DecoderResult::OutputFull, dst.len()) } else { (DecoderResult::InputEmpty, src.len()) }; let mut converted = 0usize; 'outermost: loop { match unsafe { ascii_to_basic_latin( src.as_ptr().add(converted), dst.as_mut_ptr().add(converted), length - converted, ) } { None => { return (pending, length, length); } Some((mut non_ascii, consumed)) => { converted += consumed; 'middle: loop { // `converted` doesn't count the reading of `non_ascii` yet. // Since the non-ASCIIness of `non_ascii` is hidden from // the optimizer, it can't figure out that it's OK to // statically omit the bound check when accessing // `[u16; 128]` with an index // `non_ascii as usize - 0x80usize`. let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; // let mapped = self.table[non_ascii as usize - 0x80usize]; if mapped == 0u16 { return ( DecoderResult::Malformed(1, 0), converted + 1, // +1 `for non_ascii` converted, ); } unsafe { // The bound check has already been performed *(dst.get_unchecked_mut(converted)) = mapped; } converted += 1; // Next, handle ASCII punctuation and non-ASCII without // going back to ASCII acceleration. Non-ASCII scripts // use ASCII punctuation, so this avoid going to // acceleration just for punctuation/space and then // failing. This is a significant boost to non-ASCII // scripts. // TODO: Split out Latin converters without this part // this stuff makes Latin script-conversion slower. if converted == length { return (pending, length, length); } let mut b = unsafe { *(src.get_unchecked(converted)) }; 'innermost: loop { if b > 127 { non_ascii = b; continue 'middle; } // Testing on Haswell says that we should write the // byte unconditionally instead of trying to unread it // to make it part of the next SIMD stride. unsafe { *(dst.get_unchecked_mut(converted)) = u16::from(b); } converted += 1; if b < 60 { // We've got punctuation if converted == length { return (pending, length, length); } b = unsafe { *(src.get_unchecked(converted)) }; continue 'innermost; } // We've got markup or ASCII text continue 'outermost; } } } } } } pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize { let mut bytes = buffer; let mut total = 0; loop { if let Some((non_ascii, offset)) = validate_ascii(bytes) { total += offset; let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; if mapped != u16::from(non_ascii) { return total; } total += 1; bytes = &bytes[offset + 1..]; } else { return total; } } } } pub struct SingleByteEncoder { table: &'static [u16; 128], run_bmp_offset: usize, run_byte_offset: usize, run_length: usize, } impl SingleByteEncoder { pub fn new( encoding: &'static Encoding, data: &'static [u16; 128], run_bmp_offset: u16, run_byte_offset: u8, run_length: u8, ) -> Encoder { Encoder::new( encoding, VariantEncoder::SingleByte(SingleByteEncoder { table: data, run_bmp_offset: run_bmp_offset as usize, run_byte_offset: run_byte_offset as usize, run_length: run_length as usize, }), ) } pub fn max_buffer_length_from_utf16_without_replacement( &self, u16_length: usize, ) -> Option { Some(u16_length) } pub fn max_buffer_length_from_utf8_without_replacement( &self, byte_length: usize, ) -> Option { Some(byte_length) } #[inline(always)] fn encode_u16(&self, code_unit: u16) -> Option { // First, we see if the code unit falls into a run of consecutive // code units that can be mapped by offset. This is very efficient // for most non-Latin encodings as well as Latin1-ish encodings. // // For encodings that don't fit this pattern, the run (which may // have the length of just one) just establishes the starting point // for the next rule. // // Next, we do a forward linear search in the part of the index // after the run. Even in non-Latin1-ish Latin encodings (except // macintosh), the lower case letters are here. // // Next, we search the third quadrant up to the start of the run // (upper case letters in Latin encodings except macintosh, in // Greek and in KOI encodings) and then the second quadrant, // except if the run stared before the third quadrant, we search // the second quadrant up to the run. // // Last, we search the first quadrant, which has unused controls // or punctuation in most encodings. This is bad for macintosh // and IBM866, but those are rare. // Run of consecutive units let unit_as_usize = code_unit as usize; let offset = unit_as_usize.wrapping_sub(self.run_bmp_offset); if offset < self.run_length { return Some((128 + self.run_byte_offset + offset) as u8); } // Search after the run let tail_start = self.run_byte_offset + self.run_length; if let Some(pos) = position(&self.table[tail_start..], code_unit) { return Some((128 + tail_start + pos) as u8); } if self.run_byte_offset >= 64 { // Search third quadrant before the run if let Some(pos) = position(&self.table[64..self.run_byte_offset], code_unit) { return Some(((128 + 64) + pos) as u8); } // Search second quadrant if let Some(pos) = position(&self.table[32..64], code_unit) { return Some(((128 + 32) + pos) as u8); } } else if let Some(pos) = position(&self.table[32..self.run_byte_offset], code_unit) { // windows-1252, windows-874, ISO-8859-15 and ISO-8859-5 // Search second quadrant before the run return Some(((128 + 32) + pos) as u8); } // Search first quadrant if let Some(pos) = position(&self.table[..32], code_unit) { return Some((128 + pos) as u8); } None } ascii_compatible_bmp_encoder_function!( { match self.encode_u16(bmp) { Some(byte) => handle.write_one(byte), None => { return ( EncoderResult::unmappable_from_bmp(bmp), source.consumed(), handle.written(), ); } } }, bmp, self, source, handle, copy_ascii_to_check_space_one, check_space_one, encode_from_utf8_raw, str, Utf8Source, true ); pub fn encode_from_utf16_raw( &mut self, src: &[u16], dst: &mut [u8], _last: bool, ) -> (EncoderResult, usize, usize) { let (pending, length) = if dst.len() < src.len() { (EncoderResult::OutputFull, dst.len()) } else { (EncoderResult::InputEmpty, src.len()) }; let mut converted = 0usize; 'outermost: loop { match unsafe { basic_latin_to_ascii( src.as_ptr().add(converted), dst.as_mut_ptr().add(converted), length - converted, ) } { None => { return (pending, length, length); } Some((mut non_ascii, consumed)) => { converted += consumed; 'middle: loop { // `converted` doesn't count the reading of `non_ascii` yet. match self.encode_u16(non_ascii) { Some(byte) => { unsafe { *(dst.get_unchecked_mut(converted)) = byte; } converted += 1; } None => { // At this point, we need to know if we // have a surrogate. let high_bits = non_ascii & 0xFC00u16; if high_bits == 0xD800u16 { // high surrogate if converted + 1 == length { // End of buffer. This surrogate is unpaired. return ( EncoderResult::Unmappable('\u{FFFD}'), converted + 1, // +1 `for non_ascii` converted, ); } let second = u32::from(unsafe { *src.get_unchecked(converted + 1) }); if second & 0xFC00u32 != 0xDC00u32 { return ( EncoderResult::Unmappable('\u{FFFD}'), converted + 1, // +1 `for non_ascii` converted, ); } // The next code unit is a low surrogate. let astral: char = unsafe { ::core::char::from_u32_unchecked( (u32::from(non_ascii) << 10) + second - (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32), ) }; return ( EncoderResult::Unmappable(astral), converted + 2, // +2 `for non_ascii` and `second` converted, ); } if high_bits == 0xDC00u16 { // Unpaired low surrogate return ( EncoderResult::Unmappable('\u{FFFD}'), converted + 1, // +1 `for non_ascii` converted, ); } return ( EncoderResult::unmappable_from_bmp(non_ascii), converted + 1, // +1 `for non_ascii` converted, ); } } // Next, handle ASCII punctuation and non-ASCII without // going back to ASCII acceleration. Non-ASCII scripts // use ASCII punctuation, so this avoid going to // acceleration just for punctuation/space and then // failing. This is a significant boost to non-ASCII // scripts. // TODO: Split out Latin converters without this part // this stuff makes Latin script-conversion slower. if converted == length { return (pending, length, length); } let mut unit = unsafe { *(src.get_unchecked(converted)) }; 'innermost: loop { if unit > 127 { non_ascii = unit; continue 'middle; } // Testing on Haswell says that we should write the // byte unconditionally instead of trying to unread it // to make it part of the next SIMD stride. unsafe { *(dst.get_unchecked_mut(converted)) = unit as u8; } converted += 1; if unit < 60 { // We've got punctuation if converted == length { return (pending, length, length); } unit = unsafe { *(src.get_unchecked(converted)) }; continue 'innermost; } // We've got markup or ASCII text continue 'outermost; } } } } } } } // Any copyright to the test code below this comment is dedicated to the // Public Domain. http://creativecommons.org/publicdomain/zero/1.0/ #[cfg(all(test, feature = "alloc"))] mod tests { use super::super::testing::*; use super::super::*; #[test] fn test_windows_1255_ca() { decode(WINDOWS_1255, b"\xCA", "\u{05BA}"); encode(WINDOWS_1255, "\u{05BA}", b"\xCA"); } #[test] fn test_ascii_punctuation() { let bytes = b"\xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4. \xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4."; let characters = "\u{0391}\u{03C5}\u{03C4}\u{03CC} \ \u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \ \u{03C4}\u{03B5}\u{03C3}\u{03C4}. \u{0391}\u{03C5}\u{03C4}\u{03CC} \ \u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \ \u{03C4}\u{03B5}\u{03C3}\u{03C4}."; decode(WINDOWS_1253, bytes, characters); encode(WINDOWS_1253, characters, bytes); } #[test] fn test_decode_malformed() { decode( WINDOWS_1253, b"\xC1\xF5\xD2\xF4\xFC", "\u{0391}\u{03C5}\u{FFFD}\u{03C4}\u{03CC}", ); } #[test] fn test_encode_unmappables() { encode( WINDOWS_1253, "\u{0391}\u{03C5}\u{2603}\u{03C4}\u{03CC}", b"\xC1\xF5☃\xF4\xFC", ); encode( WINDOWS_1253, "\u{0391}\u{03C5}\u{1F4A9}\u{03C4}\u{03CC}", b"\xC1\xF5💩\xF4\xFC", ); } #[test] fn test_encode_unpaired_surrogates() { encode_from_utf16( WINDOWS_1253, &[0x0391u16, 0x03C5u16, 0xDCA9u16, 0x03C4u16, 0x03CCu16], b"\xC1\xF5�\xF4\xFC", ); encode_from_utf16( WINDOWS_1253, &[0x0391u16, 0x03C5u16, 0xD83Du16, 0x03C4u16, 0x03CCu16], b"\xC1\xF5�\xF4\xFC", ); encode_from_utf16( WINDOWS_1253, &[0x0391u16, 0x03C5u16, 0x03C4u16, 0x03CCu16, 0xD83Du16], b"\xC1\xF5\xF4\xFC�", ); } pub const HIGH_BYTES: &'static [u8; 128] = &[ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF, ]; fn decode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) { let mut with_replacement = [0u16; 128]; let mut it = data.iter().enumerate(); loop { match it.next() { Some((i, code_point)) => { if *code_point == 0 { with_replacement[i] = 0xFFFD; } else { with_replacement[i] = *code_point; } } None => { break; } } } decode_to_utf16(encoding, HIGH_BYTES, &with_replacement[..]); } fn encode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) { let mut with_zeros = [0u8; 128]; let mut it = data.iter().enumerate(); loop { match it.next() { Some((i, code_point)) => { if *code_point == 0 { with_zeros[i] = 0; } else { with_zeros[i] = HIGH_BYTES[i]; } } None => { break; } } } encode_from_utf16(encoding, data, &with_zeros[..]); } #[test] fn test_single_byte_from_two_low_surrogates() { let expectation = b"��"; let mut output = [0u8; 40]; let mut encoder = WINDOWS_1253.new_encoder(); let (result, read, written, had_errors) = encoder.encode_from_utf16(&[0xDC00u16, 0xDEDEu16], &mut output[..], true); assert_eq!(result, CoderResult::InputEmpty); assert_eq!(read, 2); assert_eq!(written, expectation.len()); assert!(had_errors); assert_eq!(&output[..written], expectation); } // These tests are so self-referential that they are pretty useless. // BEGIN GENERATED CODE. PLEASE DO NOT EDIT. // Instead, please regenerate using generate-encoding-data.py #[test] fn test_single_byte_decode() { decode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866); decode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10); if cfg!(miri) { // Miri is too slow return; } decode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13); decode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14); decode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15); decode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16); decode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2); decode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3); decode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4); decode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5); decode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6); decode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7); decode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8); decode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r); decode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u); decode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh); decode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250); decode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251); decode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252); decode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253); decode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254); decode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255); decode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256); decode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257); decode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258); decode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874); decode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic); } #[test] fn test_single_byte_encode() { encode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866); encode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10); if cfg!(miri) { // Miri is too slow return; } encode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13); encode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14); encode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15); encode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16); encode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2); encode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3); encode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4); encode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5); encode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6); encode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7); encode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8); encode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r); encode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u); encode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh); encode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250); encode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251); encode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252); encode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253); encode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254); encode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255); encode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256); encode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257); encode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258); encode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874); encode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic); } // END GENERATED CODE }