#![no_std] #![forbid(missing_docs)] // The safety requirement is "use the procedural derive". #![allow(clippy::missing_safety_doc)] //! A library for defining enums that can be used in compact bit sets. It supports enums up to 128 //! variants, and has a macro to use these sets in constants. //! //! For serde support, enable the `serde` feature. //! //! # Defining enums for use with EnumSet //! //! Enums to be used with [`EnumSet`] should be defined using `#[derive(EnumSetType)]`: //! //! ```rust //! # use enumset::*; //! #[derive(EnumSetType, Debug)] //! pub enum Enum { //! A, B, C, D, E, F, G, //! } //! ``` //! //! For more information on more advanced use cases, see the documentation for //! [`#[derive(EnumSetType)]`](./derive.EnumSetType.html). //! //! # Working with EnumSets //! //! EnumSets can be constructed via [`EnumSet::new()`] like a normal set. In addition, //! `#[derive(EnumSetType)]` creates operator overloads that allow you to create EnumSets like so: //! //! ```rust //! # use enumset::*; //! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } //! let new_set = Enum::A | Enum::C | Enum::G; //! assert_eq!(new_set.len(), 3); //! ``` //! //! All bitwise operations you would expect to work on bitsets also work on both EnumSets and //! enums with `#[derive(EnumSetType)]`: //! ```rust //! # use enumset::*; //! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } //! // Intersection of sets //! assert_eq!((Enum::A | Enum::B) & Enum::C, EnumSet::empty()); //! assert_eq!((Enum::A | Enum::B) & Enum::A, Enum::A); //! assert_eq!(Enum::A & Enum::B, EnumSet::empty()); //! //! // Symmetric difference of sets //! assert_eq!((Enum::A | Enum::B) ^ (Enum::B | Enum::C), Enum::A | Enum::C); //! assert_eq!(Enum::A ^ Enum::C, Enum::A | Enum::C); //! //! // Difference of sets //! assert_eq!((Enum::A | Enum::B | Enum::C) - Enum::B, Enum::A | Enum::C); //! //! // Complement of sets //! assert_eq!(!(Enum::E | Enum::G), Enum::A | Enum::B | Enum::C | Enum::D | Enum::F); //! ``` //! //! The [`enum_set!`] macro allows you to create EnumSets in constant contexts: //! //! ```rust //! # use enumset::*; //! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } //! const CONST_SET: EnumSet = enum_set!(Enum::A | Enum::B); //! assert_eq!(CONST_SET, Enum::A | Enum::B); //! ``` //! //! Mutable operations on the [`EnumSet`] otherwise similarly to Rust's builtin sets: //! //! ```rust //! # use enumset::*; //! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } //! let mut set = EnumSet::new(); //! set.insert(Enum::A); //! set.insert_all(Enum::E | Enum::G); //! assert!(set.contains(Enum::A)); //! assert!(!set.contains(Enum::B)); //! assert_eq!(set, Enum::A | Enum::E | Enum::G); //! ``` use core::cmp::Ordering; use core::fmt; use core::fmt::{Debug, Formatter}; use core::hash::{Hash, Hasher}; use core::iter::{FromIterator, Sum}; use core::ops::*; #[doc(hidden)] /// Everything in this module is internal API and may change at any time. pub mod __internal { use super::*; /// A reexport of core to allow our macros to be generic to std vs core. pub use ::core as core_export; /// A reexport of serde so there is no requirement to depend on serde. #[cfg(feature = "serde")] pub use serde2 as serde; /// The actual members of EnumSetType. Put here to avoid polluting global namespaces. pub unsafe trait EnumSetTypePrivate { /// The underlying type used to store the bitset. type Repr: EnumSetTypeRepr; /// A mask of bits that are valid in the bitset. const ALL_BITS: Self::Repr; /// Converts an enum of this type into its bit position. fn enum_into_u32(self) -> u32; /// Converts a bit position into an enum value. unsafe fn enum_from_u32(val: u32) -> Self; /// Serializes the `EnumSet`. /// /// This and `deserialize` are part of the `EnumSetType` trait so the procedural derive /// can control how `EnumSet` is serialized. #[cfg(feature = "serde")] fn serialize(set: EnumSet, ser: S) -> Result where Self: EnumSetType; /// Deserializes the `EnumSet`. #[cfg(feature = "serde")] fn deserialize<'de, D: serde::Deserializer<'de>>(de: D) -> Result, D::Error> where Self: EnumSetType; } } #[cfg(feature = "serde")] use crate::__internal::serde; use crate::__internal::EnumSetTypePrivate; #[cfg(feature = "serde")] use crate::serde::{Deserialize, Serialize}; mod repr; use crate::repr::EnumSetTypeRepr; /// The procedural macro used to derive [`EnumSetType`], and allow enums to be used with /// [`EnumSet`]. /// /// It may be used with any enum with no data fields, at most 127 variants, and no variant /// discriminators larger than 127. /// /// # Additional Impls /// /// In addition to the implementation of `EnumSetType`, this procedural macro creates multiple /// other impls that are either required for the macro to work, or make the procedural macro more /// ergonomic to use. /// /// A full list of traits implemented as is follows: /// /// * [`Copy`], [`Clone`], [`Eq`], [`PartialEq`] implementations are created to allow `EnumSet` /// to function properly. These automatic implementations may be suppressed using /// `#[enumset(no_super_impls)]`, but these traits must still be implemented in another way. /// * [`PartialEq`], [`Sub`], [`BitAnd`], [`BitOr`], [`BitXor`], and [`Not`] implementations are /// created to allow the crate to be used more ergonomically in expressions. These automatic /// implementations may be suppressed using `#[enumset(no_ops)]`. /// /// # Options /// /// Options are given with `#[enumset(foo)]` annotations attached to the same enum as the derive. /// Multiple options may be given in the same annotation using the `#[enumset(foo, bar)]` syntax. /// /// A full list of options is as follows: /// /// * `#[enumset(no_super_impls)]` prevents the derive from creating implementations required for /// [`EnumSet`] to function. When this attribute is specified, implementations of [`Copy`], /// [`Clone`], [`Eq`], and [`PartialEq`]. This can be useful if you are using a code generator /// that already derives these traits. These impls should function identically to the /// automatically derived versions, or unintentional behavior may be a result. /// * `#[enumset(no_ops)` prevents the derive from implementing any operator traits. /// * `#[enumset(crate_name = "enumset2")]` may be used to change the name of the `enumset` crate /// used in the generated code. When the `std` feature is enabled, enumset parses `Cargo.toml` /// to determine the name of the crate, and this flag is unnecessary. /// * `#[enumset(repr = "u8")]` may be used to specify the in-memory representation of `EnumSet`s /// of this enum type. The effects of this are described in [the `EnumSet` documentation under /// “FFI, Safety and `repr`”][EnumSet#ffi-safety-and-repr]. Allowed types are `u8`, `u16`, `u32`, /// `u64` and `u128`. If this is not used, then the derive macro will choose a type to best fit /// the enum, but there are no guarantees about which type will be chosen. /// /// When the `serde` feature is used, the following features may also be specified. These options /// may be used (with no effect) when building without the feature enabled: /// /// * `#[enumset(serialize_repr = "u8")]` may be used to specify the integer type used to serialize /// the underlying bitset. Any type allowed in the `repr` option may be used in this option. /// * `#[enumset(serialize_as_list)]` may be used to serialize the bitset as a list of enum /// variants instead of an integer. This requires [`Deserialize`] and [`Serialize`] be /// implemented on the enum. /// * `#[enumset(serialize_deny_unknown)]` causes the generated deserializer to return an error /// for unknown bits instead of silently ignoring them. /// /// # Examples /// /// Deriving a plain EnumSetType: /// /// ```rust /// # use enumset::*; /// #[derive(EnumSetType)] /// pub enum Enum { /// A, B, C, D, E, F, G, /// } /// ``` /// /// Deriving a sparse EnumSetType: /// /// ```rust /// # use enumset::*; /// #[derive(EnumSetType)] /// pub enum SparseEnum { /// A = 10, B = 20, C = 30, D = 127, /// } /// ``` /// /// Deriving an EnumSetType without adding ops: /// /// ```rust /// # use enumset::*; /// #[derive(EnumSetType)] /// #[enumset(no_ops)] /// pub enum NoOpsEnum { /// A, B, C, D, E, F, G, /// } /// ``` pub use enumset_derive::EnumSetType; /// The trait used to define enum types that may be used with [`EnumSet`]. /// /// This trait must be impelmented using `#[derive(EnumSetType)]`, is not public API, and its /// internal structure may change at any time with no warning. /// /// For full documentation on the procedural derive and its options, see /// [`#[derive(EnumSetType)]`](./derive.EnumSetType.html). pub unsafe trait EnumSetType: Copy + Eq + EnumSetTypePrivate {} /// An [`EnumSetType`] for which [`EnumSet`]s have a guaranteed in-memory representation. /// /// An implementation of this trait is generated by using /// [`#[derive(EnumSetType)]`](./derive.EnumSetType.html) with the annotation /// `#[enumset(repr = "…")]`, where `…` is `u8`, `u16`, `u32`, `u64` or `u128`. /// /// For any type `T` that implements this trait, the in-memory representation of `EnumSet` /// is guaranteed to be `Repr`. This guarantee is useful for FFI. See [the `EnumSet` documentation /// under “FFI, Safety and `repr`”][EnumSet#ffi-safety-and-repr] for an example. pub unsafe trait EnumSetTypeWithRepr: EnumSetType + EnumSetTypePrivate::Repr> { /// The guaranteed representation. type Repr: EnumSetTypeRepr; } /// An efficient set type for enums. /// /// It is implemented using a bitset stored using the smallest integer that can fit all bits /// in the underlying enum. In general, an enum variant with a discriminator of `n` is stored in /// the nth least significant bit (corresponding with a mask of, e.g. `1 << enum as u32`). /// /// # Numeric representation /// /// `EnumSet` is internally implemented using integer types, and as such can be easily converted /// from and to numbers. /// /// Each bit of the underlying integer corresponds to at most one particular enum variant. If the /// corresponding bit for a variant is set, it present in the set. Bits that do not correspond to /// any variant are always unset. /// /// By default, each enum variant is stored in a bit corresponding to its discriminator. An enum /// variant with a discriminator of `n` is stored in the `n + 1`th least significant bit /// (corresponding to a mask of e.g. `1 << enum as u32`). /// /// # Serialization /// /// When the `serde` feature is enabled, `EnumSet`s can be serialized and deserialized using /// the `serde` crate. The exact serialization format can be controlled with additional attributes /// on the enum type. These attributes are valid regardless of whether the `serde` feature /// is enabled. /// /// By default, `EnumSet`s serialize by directly writing out the underlying bitset as an integer /// of the smallest type that can fit in the underlying enum. You can add a /// `#[enumset(serialize_repr = "u8")]` attribute to your enum to control the integer type used /// for serialization. This can be important for avoiding unintentional breaking changes when /// `EnumSet`s are serialized with formats like `bincode`. /// /// By default, unknown bits are ignored and silently removed from the bitset. To override thris /// behavior, you can add a `#[enumset(serialize_deny_unknown)]` attribute. This will cause /// deserialization to fail if an invalid bit is set. /// /// In addition, the `#[enumset(serialize_as_list)]` attribute causes the `EnumSet` to be /// instead serialized as a list of enum variants. This requires your enum type implement /// [`Serialize`] and [`Deserialize`]. Note that this is a breaking change. /// /// # FFI, Safety and `repr` /// /// If an enum type `T` is annotated with [`#[enumset(repr = "R")]`][derive@EnumSetType#options], /// then several things happen: /// /// * `T` will implement [EnumSetTypeWithRepr]<Repr = R> in addition to /// [`EnumSetType`]. /// * The `EnumSet` methods with `repr` in their name, such as [`as_repr`][EnumSet::as_repr] and /// [`from_repr`][EnumSet::from_repr], will be available for `EnumSet`. /// * The in-memory representation of `EnumSet` is guaranteed to be `R`. /// /// That last guarantee makes it sound to send `EnumSet` across an FFI boundary. For example: /// /// ``` /// # use enumset::*; /// # /// # mod ffi_impl { /// # // This example “foreign” function is actually written in Rust, but for the sake /// # // of example, we'll pretend it's written in C. /// # #[no_mangle] /// # extern "C" fn some_foreign_function(set: u32) -> u32 { /// # set & 0b100 /// # } /// # } /// # /// extern "C" { /// // This function is written in C like: /// // uint32_t some_foreign_function(uint32_t set) { … } /// fn some_foreign_function(set: EnumSet) -> EnumSet; /// } /// /// #[derive(Debug, EnumSetType)] /// #[enumset(repr = "u32")] /// enum MyEnum { A, B, C } /// /// let set: EnumSet = enum_set!(MyEnum::A | MyEnum::C); /// /// let new_set: EnumSet = unsafe { some_foreign_function(set) }; /// assert_eq!(new_set, enum_set!(MyEnum::C)); /// ``` /// /// When an `EnumSet` is received via FFI, all bits that don't correspond to an enum variant /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`. #[derive(Copy, Clone, PartialEq, Eq)] #[repr(transparent)] pub struct EnumSet { #[doc(hidden)] /// This is public due to the [`enum_set!`] macro. /// This is **NOT** public API and may change at any time. pub __priv_repr: T::Repr, } impl EnumSet { // Returns all bits valid for the enum #[inline(always)] fn all_bits() -> T::Repr { T::ALL_BITS } /// Creates an empty `EnumSet`. #[inline(always)] pub fn new() -> Self { EnumSet { __priv_repr: T::Repr::empty() } } /// Returns an `EnumSet` containing a single element. #[inline(always)] pub fn only(t: T) -> Self { let mut set = Self::new(); set.insert(t); set } /// Creates an empty `EnumSet`. /// /// This is an alias for [`EnumSet::new`]. #[inline(always)] pub fn empty() -> Self { Self::new() } /// Returns an `EnumSet` containing all valid variants of the enum. #[inline(always)] pub fn all() -> Self { EnumSet { __priv_repr: Self::all_bits() } } /// Total number of bits used by this type. Note that the actual amount of space used is /// rounded up to the next highest integer type (`u8`, `u16`, `u32`, `u64`, or `u128`). /// /// This is the same as [`EnumSet::variant_count`] except in enums with "sparse" variants. /// (e.g. `enum Foo { A = 10, B = 20 }`) #[inline(always)] pub fn bit_width() -> u32 { T::Repr::WIDTH - T::ALL_BITS.leading_zeros() } /// The number of valid variants that this type can contain. /// /// This is the same as [`EnumSet::bit_width`] except in enums with "sparse" variants. /// (e.g. `enum Foo { A = 10, B = 20 }`) #[inline(always)] pub fn variant_count() -> u32 { T::ALL_BITS.count_ones() } /// Returns the number of elements in this set. #[inline(always)] pub fn len(&self) -> usize { self.__priv_repr.count_ones() as usize } /// Returns `true` if the set contains no elements. #[inline(always)] pub fn is_empty(&self) -> bool { self.__priv_repr.is_empty() } /// Removes all elements from the set. #[inline(always)] pub fn clear(&mut self) { self.__priv_repr = T::Repr::empty() } /// Returns `true` if `self` has no elements in common with `other`. This is equivalent to /// checking for an empty intersection. #[inline(always)] pub fn is_disjoint(&self, other: Self) -> bool { (*self & other).is_empty() } /// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the /// values in `other`. #[inline(always)] pub fn is_superset(&self, other: Self) -> bool { (*self & other).__priv_repr == other.__priv_repr } /// Returns `true` if the set is a subset of another, i.e., `other` contains at least all /// the values in `self`. #[inline(always)] pub fn is_subset(&self, other: Self) -> bool { other.is_superset(*self) } /// Returns a set containing any elements present in either set. #[inline(always)] pub fn union(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr | other.__priv_repr } } /// Returns a set containing every element present in both sets. #[inline(always)] pub fn intersection(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr & other.__priv_repr } } /// Returns a set containing element present in `self` but not in `other`. #[inline(always)] pub fn difference(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr.and_not(other.__priv_repr) } } /// Returns a set containing every element present in either `self` or `other`, but is not /// present in both. #[inline(always)] pub fn symmetrical_difference(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr ^ other.__priv_repr } } /// Returns a set containing all enum variants not in this set. #[inline(always)] pub fn complement(&self) -> Self { EnumSet { __priv_repr: !self.__priv_repr & Self::all_bits() } } /// Checks whether this set contains a value. #[inline(always)] pub fn contains(&self, value: T) -> bool { self.__priv_repr.has_bit(value.enum_into_u32()) } /// Adds a value to this set. /// /// If the set did not have this value present, `true` is returned. /// /// If the set did have this value present, `false` is returned. #[inline(always)] pub fn insert(&mut self, value: T) -> bool { let contains = !self.contains(value); self.__priv_repr.add_bit(value.enum_into_u32()); contains } /// Removes a value from this set. Returns whether the value was present in the set. #[inline(always)] pub fn remove(&mut self, value: T) -> bool { let contains = self.contains(value); self.__priv_repr.remove_bit(value.enum_into_u32()); contains } /// Adds all elements in another set to this one. #[inline(always)] pub fn insert_all(&mut self, other: Self) { self.__priv_repr = self.__priv_repr | other.__priv_repr } /// Removes all values in another set from this one. #[inline(always)] pub fn remove_all(&mut self, other: Self) { self.__priv_repr = self.__priv_repr.and_not(other.__priv_repr); } /// Iterates the contents of the set in order from the least significant bit to the most /// significant bit. /// /// Note that iterator invalidation is impossible as the iterator contains a copy of this type, /// rather than holding a reference to it. pub fn iter(&self) -> EnumSetIter { EnumSetIter::new(*self) } /// Returns a `T::Repr` representing the elements of this set. /// /// Unlike the other `as_*` methods, this method is zero-cost and guaranteed not to fail, /// panic or truncate any bits. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn as_repr(&self) -> ::Repr where T: EnumSetTypeWithRepr { self.__priv_repr } /// Constructs a bitset from a `T::Repr` without checking for invalid bits. /// /// Unlike the other `from_*` methods, this method is zero-cost and guaranteed not to fail, /// panic or truncate any bits, provided the conditions under “Safety” are upheld. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. /// /// # Safety /// /// All bits in the provided parameter `bits` that don't correspond to an enum variant of /// `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`. #[inline(always)] pub unsafe fn from_repr_unchecked(bits: ::Repr) -> Self where T: EnumSetTypeWithRepr { Self { __priv_repr: bits } } /// Constructs a bitset from a `T::Repr`. /// /// If a bit that doesn't correspond to an enum variant is set, this /// method will panic. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn from_repr(bits: ::Repr) -> Self where T: EnumSetTypeWithRepr { Self::try_from_repr(bits).expect("Bitset contains invalid variants.") } /// Attempts to constructs a bitset from a `T::Repr`. /// /// If a bit that doesn't correspond to an enum variant is set, this /// method will return `None`. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn try_from_repr(bits: ::Repr) -> Option where T: EnumSetTypeWithRepr { let mask = Self::all().__priv_repr; if bits.and_not(mask).is_empty() { Some(EnumSet { __priv_repr: bits }) } else { None } } /// Constructs a bitset from a `T::Repr`, ignoring invalid variants. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn from_repr_truncated(bits: ::Repr) -> Self where T: EnumSetTypeWithRepr { let mask = Self::all().as_repr(); let bits = bits & mask; EnumSet { __priv_repr: bits } } } /// Helper macro for generating conversion functions. macro_rules! conversion_impls { ( $(for_num!( $underlying:ty, $underlying_str:expr, $from_fn:ident $to_fn:ident $from_fn_opt:ident $to_fn_opt:ident, $from:ident $try_from:ident $from_truncated:ident $from_unchecked:ident, $to:ident $try_to:ident $to_truncated:ident );)* ) => { impl EnumSet {$( #[doc = "Returns a `"] #[doc = $underlying_str] #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ not fit in a `"] #[doc = $underlying_str] #[doc = "` or contains bits that do not correspond to an enum variant, this method \ will panic."] #[inline(always)] pub fn $to(&self) -> $underlying { self.$try_to().expect("Bitset will not fit into this type.") } #[doc = "Tries to return a `"] #[doc = $underlying_str] #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ not fit in a `"] #[doc = $underlying_str] #[doc = "` or contains bits that do not correspond to an enum variant, this method \ will instead return `None`."] #[inline(always)] pub fn $try_to(&self) -> Option<$underlying> { EnumSetTypeRepr::$to_fn_opt(&self.__priv_repr) } #[doc = "Returns a truncated `"] #[doc = $underlying_str] #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ not fit in a `"] #[doc = $underlying_str] #[doc = "`, this method will truncate any bits that don't fit or do not correspond \ to an enum variant."] #[inline(always)] pub fn $to_truncated(&self) -> $underlying { EnumSetTypeRepr::$to_fn(&self.__priv_repr) } #[doc = "Constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \ method will panic."] #[inline(always)] pub fn $from(bits: $underlying) -> Self { Self::$try_from(bits).expect("Bitset contains invalid variants.") } #[doc = "Attempts to constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \ method will return `None`."] #[inline(always)] pub fn $try_from(bits: $underlying) -> Option { let bits = T::Repr::$from_fn_opt(bits); let mask = Self::all().__priv_repr; bits.and_then(|bits| if bits.and_not(mask).is_empty() { Some(EnumSet { __priv_repr: bits }) } else { None }) } #[doc = "Constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`, ignoring invalid variants."] #[inline(always)] pub fn $from_truncated(bits: $underlying) -> Self { let mask = Self::all().$to_truncated(); let bits = ::$from_fn(bits & mask); EnumSet { __priv_repr: bits } } #[doc = "Constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`, without checking for invalid bits."] /// /// # Safety /// /// All bits in the provided parameter `bits` that don't correspond to an enum variant /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set /// to `1`. #[inline(always)] pub unsafe fn $from_unchecked(bits: $underlying) -> Self { EnumSet { __priv_repr: ::$from_fn(bits) } } )*} } } conversion_impls! { for_num!(u8, "u8", from_u8 to_u8 from_u8_opt to_u8_opt, from_u8 try_from_u8 from_u8_truncated from_u8_unchecked, as_u8 try_as_u8 as_u8_truncated); for_num!(u16, "u16", from_u16 to_u16 from_u16_opt to_u16_opt, from_u16 try_from_u16 from_u16_truncated from_u16_unchecked, as_u16 try_as_u16 as_u16_truncated); for_num!(u32, "u32", from_u32 to_u32 from_u32_opt to_u32_opt, from_u32 try_from_u32 from_u32_truncated from_u32_unchecked, as_u32 try_as_u32 as_u32_truncated); for_num!(u64, "u64", from_u64 to_u64 from_u64_opt to_u64_opt, from_u64 try_from_u64 from_u64_truncated from_u64_unchecked, as_u64 try_as_u64 as_u64_truncated); for_num!(u128, "u128", from_u128 to_u128 from_u128_opt to_u128_opt, from_u128 try_from_u128 from_u128_truncated from_u128_unchecked, as_u128 try_as_u128 as_u128_truncated); for_num!(usize, "usize", from_usize to_usize from_usize_opt to_usize_opt, from_usize try_from_usize from_usize_truncated from_usize_unchecked, as_usize try_as_usize as_usize_truncated); } impl Default for EnumSet { /// Returns an empty set. fn default() -> Self { Self::new() } } impl IntoIterator for EnumSet { type Item = T; type IntoIter = EnumSetIter; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl Sum for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | v) } } impl<'a, T: EnumSetType> Sum<&'a EnumSet> for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | *v) } } impl Sum for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | v) } } impl<'a, T: EnumSetType> Sum<&'a T> for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | *v) } } impl>> Sub for EnumSet { type Output = Self; #[inline(always)] fn sub(self, other: O) -> Self::Output { self.difference(other.into()) } } impl>> BitAnd for EnumSet { type Output = Self; #[inline(always)] fn bitand(self, other: O) -> Self::Output { self.intersection(other.into()) } } impl>> BitOr for EnumSet { type Output = Self; #[inline(always)] fn bitor(self, other: O) -> Self::Output { self.union(other.into()) } } impl>> BitXor for EnumSet { type Output = Self; #[inline(always)] fn bitxor(self, other: O) -> Self::Output { self.symmetrical_difference(other.into()) } } impl>> SubAssign for EnumSet { #[inline(always)] fn sub_assign(&mut self, rhs: O) { *self = *self - rhs; } } impl>> BitAndAssign for EnumSet { #[inline(always)] fn bitand_assign(&mut self, rhs: O) { *self = *self & rhs; } } impl>> BitOrAssign for EnumSet { #[inline(always)] fn bitor_assign(&mut self, rhs: O) { *self = *self | rhs; } } impl>> BitXorAssign for EnumSet { #[inline(always)] fn bitxor_assign(&mut self, rhs: O) { *self = *self ^ rhs; } } impl Not for EnumSet { type Output = Self; #[inline(always)] fn not(self) -> Self::Output { self.complement() } } impl From for EnumSet { fn from(t: T) -> Self { EnumSet::only(t) } } impl PartialEq for EnumSet { fn eq(&self, other: &T) -> bool { self.__priv_repr == EnumSet::only(*other).__priv_repr } } impl Debug for EnumSet { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { let mut is_first = true; f.write_str("EnumSet(")?; for v in self.iter() { if !is_first { f.write_str(" | ")?; } is_first = false; v.fmt(f)?; } f.write_str(")")?; Ok(()) } } #[allow(clippy::derive_hash_xor_eq)] // This impl exists to change trait bounds only. impl Hash for EnumSet { fn hash(&self, state: &mut H) { self.__priv_repr.hash(state) } } impl PartialOrd for EnumSet { fn partial_cmp(&self, other: &Self) -> Option { self.__priv_repr.partial_cmp(&other.__priv_repr) } } impl Ord for EnumSet { fn cmp(&self, other: &Self) -> Ordering { self.__priv_repr.cmp(&other.__priv_repr) } } #[cfg(feature = "serde")] impl Serialize for EnumSet { fn serialize(&self, serializer: S) -> Result { T::serialize(*self, serializer) } } #[cfg(feature = "serde")] impl<'de, T: EnumSetType> Deserialize<'de> for EnumSet { fn deserialize>(deserializer: D) -> Result { T::deserialize(deserializer) } } /// The iterator used by [`EnumSet`]s. #[derive(Clone, Debug)] pub struct EnumSetIter { set: EnumSet, } impl EnumSetIter { fn new(set: EnumSet) -> EnumSetIter { EnumSetIter { set } } } impl Iterator for EnumSetIter { type Item = T; fn next(&mut self) -> Option { if self.set.is_empty() { None } else { let bit = self.set.__priv_repr.trailing_zeros(); self.set.__priv_repr.remove_bit(bit); unsafe { Some(T::enum_from_u32(bit)) } } } fn size_hint(&self) -> (usize, Option) { let left = self.set.len(); (left, Some(left)) } } impl DoubleEndedIterator for EnumSetIter { fn next_back(&mut self) -> Option { if self.set.is_empty() { None } else { let bit = T::Repr::WIDTH - 1 - self.set.__priv_repr.leading_zeros(); self.set.__priv_repr.remove_bit(bit); unsafe { Some(T::enum_from_u32(bit)) } } } } impl ExactSizeIterator for EnumSetIter {} impl Extend for EnumSet { fn extend>(&mut self, iter: I) { iter.into_iter().for_each(|v| { self.insert(v); }); } } impl FromIterator for EnumSet { fn from_iter>(iter: I) -> Self { let mut set = EnumSet::default(); set.extend(iter); set } } impl Extend> for EnumSet { fn extend>>(&mut self, iter: I) { iter.into_iter().for_each(|v| { self.insert_all(v); }); } } impl FromIterator> for EnumSet { fn from_iter>>(iter: I) -> Self { let mut set = EnumSet::default(); set.extend(iter); set } } /// Creates a EnumSet literal, which can be used in const contexts. /// /// The syntax used is `enum_set!(Type::A | Type::B | Type::C)`. Each variant must be of the same /// type, or a error will occur at compile-time. /// /// This macro accepts trailing `|`s to allow easier use in other macros. /// /// # Examples /// /// ```rust /// # use enumset::*; /// # #[derive(EnumSetType, Debug)] enum Enum { A, B, C } /// const CONST_SET: EnumSet = enum_set!(Enum::A | Enum::B); /// assert_eq!(CONST_SET, Enum::A | Enum::B); /// ``` /// /// This macro is strongly typed. For example, the following will not compile: /// /// ```compile_fail /// # use enumset::*; /// # #[derive(EnumSetType, Debug)] enum Enum { A, B, C } /// # #[derive(EnumSetType, Debug)] enum Enum2 { A, B, C } /// let type_error = enum_set!(Enum::A | Enum2::B); /// ``` #[macro_export] macro_rules! enum_set { ($(|)*) => { $crate::EnumSet { __priv_repr: 0 } }; ($value:path $(|)*) => { { #[allow(deprecated)] let value = $value.__impl_enumset_internal__const_only(); value } }; ($value:path | $($rest:path)|* $(|)*) => { { #[allow(deprecated)] let value = $value.__impl_enumset_internal__const_only(); $(#[allow(deprecated)] let value = $rest.__impl_enumset_internal__const_merge(value);)* value } }; }