// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxord::{max, min}; use crate::num::*; use crate::point::{point2, Point2D}; use crate::rect::Rect; use crate::scale::Scale; use crate::side_offsets::SideOffsets2D; use crate::size::Size2D; use crate::vector::{vec2, Vector2D}; use num_traits::{NumCast, Float}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "bytemuck")] use bytemuck::{Zeroable, Pod}; use core::borrow::Borrow; use core::cmp::PartialOrd; use core::fmt; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Range}; /// A 2d axis aligned rectangle represented by its minimum and maximum coordinates. /// /// # Representation /// /// This struct is similar to [`Rect`], but stores rectangle as two endpoints /// instead of origin point and size. Such representation has several advantages over /// [`Rect`] representation: /// - Several operations are more efficient with `Box2D`, including [`intersection`], /// [`union`], and point-in-rect. /// - The representation is less susceptible to overflow. With [`Rect`], computation /// of second point can overflow for a large range of values of origin and size. /// However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates /// are signed and the resulting size is unsigned. /// /// A known disadvantage of `Box2D` is that translating the rectangle requires translating /// both points, whereas translating [`Rect`] only requires translating one point. /// /// # Empty box /// /// A box is considered empty (see [`is_empty`]) if any of the following is true: /// - it's area is empty, /// - it's area is negative (`min.x > max.x` or `min.y > max.y`), /// - it contains NaNs. /// /// [`Rect`]: struct.Rect.html /// [`intersection`]: #method.intersection /// [`is_empty`]: #method.is_empty /// [`union`]: #method.union /// [`size`]: #method.size #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Box2D { pub min: Point2D, pub max: Point2D, } impl Hash for Box2D { fn hash(&self, h: &mut H) { self.min.hash(h); self.max.hash(h); } } impl Copy for Box2D {} impl Clone for Box2D { fn clone(&self) -> Self { Self::new(self.min.clone(), self.max.clone()) } } impl PartialEq for Box2D { fn eq(&self, other: &Self) -> bool { self.min.eq(&other.min) && self.max.eq(&other.max) } } impl Eq for Box2D {} impl fmt::Debug for Box2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Box2D") .field(&self.min) .field(&self.max) .finish() } } #[cfg(feature = "bytemuck")] unsafe impl Zeroable for Box2D {} #[cfg(feature = "bytemuck")] unsafe impl Pod for Box2D {} impl Box2D { /// Constructor. #[inline] pub const fn new(min: Point2D, max: Point2D) -> Self { Box2D { min, max } } /// Constructor. #[inline] pub fn from_origin_and_size(origin: Point2D, size: Size2D) -> Self where T: Copy + Add { Box2D { min: origin, max: point2(origin.x + size.width, origin.y + size.height), } } /// Creates a Box2D of the given size, at offset zero. #[inline] pub fn from_size(size: Size2D) -> Self where T: Zero { Box2D { min: Point2D::zero(), max: point2(size.width, size.height), } } } impl Box2D where T: PartialOrd, { /// Returns true if the box has a negative area. /// /// The common interpretation for a negative box is to consider it empty. It can be obtained /// by calculating the intersection of two boxes that do not intersect. #[inline] pub fn is_negative(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y } /// Returns true if the size is zero, negative or NaN. #[inline] pub fn is_empty(&self) -> bool { !(self.max.x > self.min.x && self.max.y > self.min.y) } /// Returns `true` if the two boxes intersect. #[inline] pub fn intersects(&self, other: &Self) -> bool { self.min.x < other.max.x && self.max.x > other.min.x && self.min.y < other.max.y && self.max.y > other.min.y } /// Returns `true` if this box contains the point. Points are considered /// in the box if they are on the front, left or top faces, but outside if they /// are on the back, right or bottom faces. #[inline] pub fn contains(&self, p: Point2D) -> bool { self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y } /// Returns `true` if this box contains the interior of the other box. Always /// returns `true` if other is empty, and always returns `false` if other is /// nonempty but this box is empty. #[inline] pub fn contains_box(&self, other: &Self) -> bool { other.is_empty() || (self.min.x <= other.min.x && other.max.x <= self.max.x && self.min.y <= other.min.y && other.max.y <= self.max.y) } } impl Box2D where T: Copy + PartialOrd, { #[inline] pub fn to_non_empty(&self) -> Option { if self.is_empty() { return None; } Some(*self) } /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect. #[inline] pub fn intersection(&self, other: &Self) -> Option { let b = self.intersection_unchecked(other); if b.is_empty() { return None; } Some(b) } /// Computes the intersection of two boxes without check whether they do intersect. /// /// The result is a negative box if the boxes do not intersect. /// This can be useful for computing the intersection of more than two boxes, as /// it is possible to chain multiple intersection_unchecked calls and check for /// empty/negative result at the end. #[inline] pub fn intersection_unchecked(&self, other: &Self) -> Self { Box2D { min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)), max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)), } } /// Computes the union of two boxes. /// /// If either of the boxes is empty, the other one is returned. #[inline] pub fn union(&self, other: &Self) -> Self { if other.is_empty() { return *self; } if self.is_empty() { return *other; } Box2D { min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)), max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)), } } } impl Box2D where T: Copy + Add, { /// Returns the same box, translated by a vector. #[inline] pub fn translate(&self, by: Vector2D) -> Self { Box2D { min: self.min + by, max: self.max + by, } } } impl Box2D where T: Copy + Sub, { #[inline] pub fn size(&self) -> Size2D { (self.max - self.min).to_size() } /// Change the size of the box by adjusting the max endpoint /// without modifying the min endpoint. #[inline] pub fn set_size(&mut self, size: Size2D) { let diff = (self.size() - size).to_vector(); self.max -= diff; } #[inline] pub fn width(&self) -> T { self.max.x - self.min.x } #[inline] pub fn height(&self) -> T { self.max.y - self.min.y } #[inline] pub fn to_rect(&self) -> Rect { Rect { origin: self.min, size: self.size(), } } } impl Box2D where T: Copy + Add + Sub, { /// Inflates the box by the specified sizes on each side respectively. #[inline] #[must_use] pub fn inflate(&self, width: T, height: T) -> Self { Box2D { min: point2(self.min.x - width, self.min.y - height), max: point2(self.max.x + width, self.max.y + height), } } /// Calculate the size and position of an inner box. /// /// Subtracts the side offsets from all sides. The horizontal, vertical /// and applicate offsets must not be larger than the original side length. pub fn inner_box(&self, offsets: SideOffsets2D) -> Self { Box2D { min: self.min + vec2(offsets.left, offsets.top), max: self.max - vec2(offsets.right, offsets.bottom), } } /// Calculate the b and position of an outer box. /// /// Add the offsets to all sides. The expanded box is returned. pub fn outer_box(&self, offsets: SideOffsets2D) -> Self { Box2D { min: self.min - vec2(offsets.left, offsets.top), max: self.max + vec2(offsets.right, offsets.bottom), } } } impl Box2D where T: Copy + Zero + PartialOrd, { /// Returns the smallest box containing all of the provided points. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow>, { let mut points = points.into_iter(); let (mut min_x, mut min_y) = match points.next() { Some(first) => first.borrow().to_tuple(), None => return Box2D::zero(), }; let (mut max_x, mut max_y) = (min_x, min_y); for point in points { let p = point.borrow(); if p.x < min_x { min_x = p.x } if p.x > max_x { max_x = p.x } if p.y < min_y { min_y = p.y } if p.y > max_y { max_y = p.y } } Box2D { min: point2(min_x, min_y), max: point2(max_x, max_y), } } } impl Box2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate between this box and another box. #[inline] pub fn lerp(&self, other: Self, t: T) -> Self { Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t)) } } impl Box2D where T: Copy + One + Add + Div, { pub fn center(&self) -> Point2D { let two = T::one() + T::one(); (self.min + self.max.to_vector()) / two } } impl Box2D where T: Copy + Mul + Sub, { #[inline] pub fn area(&self) -> T { let size = self.size(); size.width * size.height } } impl Box2D where T: Zero, { /// Constructor, setting all sides to zero. pub fn zero() -> Self { Box2D::new(Point2D::zero(), Point2D::zero()) } } impl Mul for Box2D { type Output = Box2D; #[inline] fn mul(self, scale: T) -> Self::Output { Box2D::new(self.min * scale, self.max * scale) } } impl MulAssign for Box2D { #[inline] fn mul_assign(&mut self, scale: T) { *self *= Scale::new(scale); } } impl Div for Box2D { type Output = Box2D; #[inline] fn div(self, scale: T) -> Self::Output { Box2D::new(self.min / scale, self.max / scale) } } impl DivAssign for Box2D { #[inline] fn div_assign(&mut self, scale: T) { *self /= Scale::new(scale); } } impl Mul> for Box2D { type Output = Box2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { Box2D::new(self.min * scale, self.max * scale) } } impl MulAssign> for Box2D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.min *= scale; self.max *= scale; } } impl Div> for Box2D { type Output = Box2D; #[inline] fn div(self, scale: Scale) -> Self::Output { Box2D::new(self.min / scale, self.max / scale) } } impl DivAssign> for Box2D { #[inline] fn div_assign(&mut self, scale: Scale) { self.min /= scale; self.max /= scale; } } impl Box2D where T: Copy, { #[inline] pub fn x_range(&self) -> Range { self.min.x..self.max.x } #[inline] pub fn y_range(&self) -> Range { self.min.y..self.max.y } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Box2D { Box2D::new(self.min.to_untyped(), self.max.to_untyped()) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(c: &Box2D) -> Box2D { Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max)) } /// Cast the unit #[inline] pub fn cast_unit(&self) -> Box2D { Box2D::new(self.min.cast_unit(), self.max.cast_unit()) } #[inline] pub fn scale(&self, x: S, y: S) -> Self where T: Mul, { Box2D { min: point2(self.min.x * x, self.min.y * y), max: point2(self.max.x * x, self.max.y * y), } } } impl Box2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. #[inline] pub fn cast(&self) -> Box2D { Box2D::new(self.min.cast(), self.max.cast()) } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating point to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using round(), round_in or round_out() before casting. pub fn try_cast(&self) -> Option> { match (self.min.try_cast(), self.max.try_cast()) { (Some(a), Some(b)) => Some(Box2D::new(a, b)), _ => None, } } // Convenience functions for common casts /// Cast into an `f32` box. #[inline] pub fn to_f32(&self) -> Box2D { self.cast() } /// Cast into an `f64` box. #[inline] pub fn to_f64(&self) -> Box2D { self.cast() } /// Cast into an `usize` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_usize(&self) -> Box2D { self.cast() } /// Cast into an `u32` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_u32(&self) -> Box2D { self.cast() } /// Cast into an `i32` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i32(&self) -> Box2D { self.cast() } /// Cast into an `i64` box, truncating decimals if any. /// /// When casting from floating point boxes, it is worth considering whether /// to `round()`, `round_in()` or `round_out()` before the cast in order to /// obtain the desired conversion behavior. #[inline] pub fn to_i64(&self) -> Box2D { self.cast() } } impl Box2D { /// Returns true if all members are finite. #[inline] pub fn is_finite(self) -> bool { self.min.is_finite() && self.max.is_finite() } } impl Box2D where T: Round, { /// Return a box with edges rounded to integer coordinates, such that /// the returned box has the same set of pixel centers as the original /// one. /// Values equal to 0.5 round up. /// Suitable for most places where integral device coordinates /// are needed, but note that any translation should be applied first to /// avoid pixel rounding errors. /// Note that this is *not* rounding to nearest integer if the values are negative. /// They are always rounding as floor(n + 0.5). #[must_use] pub fn round(&self) -> Self { Box2D::new(self.min.round(), self.max.round()) } } impl Box2D where T: Floor + Ceil, { /// Return a box with faces/edges rounded to integer coordinates, such that /// the original box contains the resulting box. #[must_use] pub fn round_in(&self) -> Self { let min = self.min.ceil(); let max = self.max.floor(); Box2D { min, max } } /// Return a box with faces/edges rounded to integer coordinates, such that /// the original box is contained in the resulting box. #[must_use] pub fn round_out(&self) -> Self { let min = self.min.floor(); let max = self.max.ceil(); Box2D { min, max } } } impl From> for Box2D where T: Copy + Zero + PartialOrd, { fn from(b: Size2D) -> Self { Self::from_size(b) } } impl Default for Box2D { fn default() -> Self { Box2D { min: Default::default(), max: Default::default(), } } } #[cfg(test)] mod tests { use crate::default::Box2D; use crate::side_offsets::SideOffsets2D; use crate::{point2, size2, vec2, Point2D}; //use super::*; #[test] fn test_size() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.size().width, 20.0); assert_eq!(b.size().height, 20.0); } #[test] fn test_width_height() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert!(b.width() == 20.0); assert!(b.height() == 20.0); } #[test] fn test_center() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.center(), Point2D::zero()); } #[test] fn test_area() { let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0)); assert_eq!(b.area(), 400.0); } #[test] fn test_from_points() { let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]); assert_eq!(b.min, point2(50.0, 25.0)); assert_eq!(b.max, point2(100.0, 160.0)); } #[test] fn test_round_in() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in(); assert_eq!(b.min.x, -25.0); assert_eq!(b.min.y, -40.0); assert_eq!(b.max.x, 60.0); assert_eq!(b.max.y, 36.0); } #[test] fn test_round_out() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out(); assert_eq!(b.min.x, -26.0); assert_eq!(b.min.y, -41.0); assert_eq!(b.max.x, 61.0); assert_eq!(b.max.y, 37.0); } #[test] fn test_round() { let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round(); assert_eq!(b.min.x, -25.0); assert_eq!(b.min.y, -40.0); assert_eq!(b.max.x, 60.0); assert_eq!(b.max.y, 37.0); } #[test] fn test_from_size() { let b = Box2D::from_size(size2(30.0, 40.0)); assert!(b.min == Point2D::zero()); assert!(b.size().width == 30.0); assert!(b.size().height == 40.0); } #[test] fn test_inner_box() { let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); assert_eq!(b.max.x, 80.0); assert_eq!(b.max.y, 155.0); assert_eq!(b.min.x, 60.0); assert_eq!(b.min.y, 35.0); } #[test] fn test_outer_box() { let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]); let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0)); assert_eq!(b.max.x, 120.0); assert_eq!(b.max.y, 165.0); assert_eq!(b.min.x, 40.0); assert_eq!(b.min.y, 15.0); } #[test] fn test_translate() { let size = size2(15.0, 15.0); let mut center = (size / 2.0).to_vector().to_point(); let b = Box2D::from_size(size); assert_eq!(b.center(), center); let translation = vec2(10.0, 2.5); let b = b.translate(translation); center += translation; assert_eq!(b.center(), center); assert_eq!(b.max.x, 25.0); assert_eq!(b.max.y, 17.5); assert_eq!(b.min.x, 10.0); assert_eq!(b.min.y, 2.5); } #[test] fn test_union() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]); let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]); let b = b1.union(&b2); assert_eq!(b.max.x, 20.0); assert_eq!(b.max.y, 20.0); assert_eq!(b.min.x, -20.0); assert_eq!(b.min.y, -20.0); } #[test] fn test_intersects() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersects(&b2)); } #[test] fn test_intersection_unchecked() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); let b = b1.intersection_unchecked(&b2); assert_eq!(b.max.x, 10.0); assert_eq!(b.max.y, 20.0); assert_eq!(b.min.x, -10.0); assert_eq!(b.min.y, -20.0); } #[test] fn test_intersection() { let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersection(&b2).is_some()); let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]); let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]); assert!(b1.intersection(&b2).is_none()); } #[test] fn test_scale() { let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]); let b = b.scale(0.5, 0.5); assert_eq!(b.max.x, 5.0); assert_eq!(b.max.y, 5.0); assert_eq!(b.min.x, -5.0); assert_eq!(b.min.y, -5.0); } #[test] fn test_lerp() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]); let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]); let b = b1.lerp(b2, 0.5); assert_eq!(b.center(), Point2D::zero()); assert_eq!(b.size().width, 10.0); assert_eq!(b.size().height, 10.0); } #[test] fn test_contains() { let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); assert!(b.contains(point2(-15.3, 10.5))); } #[test] fn test_contains_box() { let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]); assert!(b1.contains_box(&b2)); } #[test] fn test_inflate() { let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]); let b = b.inflate(10.0, 5.0); assert_eq!(b.size().width, 60.0); assert_eq!(b.size().height, 50.0); assert_eq!(b.center(), Point2D::zero()); } #[test] fn test_is_empty() { for i in 0..2 { let mut coords_neg = [-20.0, -20.0]; let mut coords_pos = [20.0, 20.0]; coords_neg[i] = 0.0; coords_pos[i] = 0.0; let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]); assert!(b.is_empty()); } } #[test] fn test_nan_empty() { use std::f32::NAN; assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty()); assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty()); assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty()); assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty()); } #[test] fn test_from_origin_and_size() { let b = Box2D::from_origin_and_size(point2(1.0, 2.0), size2(3.0, 4.0)); assert_eq!(b.min, point2(1.0, 2.0)); assert_eq!(b.size(), size2(3.0, 4.0)); } #[test] fn test_set_size() { let mut b = Box2D { min: point2(1.0, 2.0), max: point2(3.0, 4.0), }; b.set_size(size2(5.0, 6.0)); assert_eq!(b.min, point2(1.0, 2.0)); assert_eq!(b.size(), size2(5.0, 6.0)); } }