//! `hermit-abi` is small interface to call functions from the unikernel //! [RustyHermit](https://github.com/hermitcore/libhermit-rs). #![no_std] #![allow(clippy::missing_safety_doc)] #![allow(clippy::result_unit_err)] pub mod errno; pub mod tcplistener; pub mod tcpstream; use core::mem::MaybeUninit; use libc::c_void; // sysmbols, which are part of the library operating system extern "C" { fn sys_rand() -> u32; fn sys_srand(seed: u32); fn sys_secure_rand32(value: *mut u32) -> i32; fn sys_secure_rand64(value: *mut u64) -> i32; fn sys_get_processor_count() -> usize; fn sys_malloc(size: usize, align: usize) -> *mut u8; fn sys_realloc(ptr: *mut u8, size: usize, align: usize, new_size: usize) -> *mut u8; fn sys_free(ptr: *mut u8, size: usize, align: usize); fn sys_init_queue(ptr: usize) -> i32; fn sys_notify(id: usize, count: i32) -> i32; fn sys_add_queue(id: usize, timeout_ns: i64) -> i32; fn sys_wait(id: usize) -> i32; fn sys_destroy_queue(id: usize) -> i32; fn sys_read(fd: i32, buf: *mut u8, len: usize) -> isize; fn sys_write(fd: i32, buf: *const u8, len: usize) -> isize; fn sys_close(fd: i32) -> i32; fn sys_futex_wait( address: *mut u32, expected: u32, timeout: *const timespec, flags: u32, ) -> i32; fn sys_futex_wake(address: *mut u32, count: i32) -> i32; fn sys_sem_init(sem: *mut *const c_void, value: u32) -> i32; fn sys_sem_destroy(sem: *const c_void) -> i32; fn sys_sem_post(sem: *const c_void) -> i32; fn sys_sem_trywait(sem: *const c_void) -> i32; fn sys_sem_timedwait(sem: *const c_void, ms: u32) -> i32; fn sys_recmutex_init(recmutex: *mut *const c_void) -> i32; fn sys_recmutex_destroy(recmutex: *const c_void) -> i32; fn sys_recmutex_lock(recmutex: *const c_void) -> i32; fn sys_recmutex_unlock(recmutex: *const c_void) -> i32; fn sys_getpid() -> u32; fn sys_exit(arg: i32) -> !; fn sys_abort() -> !; fn sys_usleep(usecs: u64); fn sys_spawn( id: *mut Tid, func: extern "C" fn(usize), arg: usize, prio: u8, core_id: isize, ) -> i32; fn sys_spawn2( func: extern "C" fn(usize), arg: usize, prio: u8, stack_size: usize, core_id: isize, ) -> Tid; fn sys_join(id: Tid) -> i32; fn sys_yield(); fn sys_clock_gettime(clock_id: u64, tp: *mut timespec) -> i32; fn sys_open(name: *const i8, flags: i32, mode: i32) -> i32; fn sys_unlink(name: *const i8) -> i32; fn sys_network_init() -> i32; fn sys_block_current_task(); fn sys_block_current_task_with_timeout(timeout: u64); fn sys_wakeup_task(tid: Tid); fn sys_get_priority() -> u8; fn sys_set_priority(tid: Tid, prio: u8); } /// A thread handle type pub type Tid = u32; /// Maximum number of priorities pub const NO_PRIORITIES: usize = 31; /// Priority of a thread #[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)] pub struct Priority(u8); impl Priority { pub const fn into(self) -> u8 { self.0 } pub const fn from(x: u8) -> Self { Priority(x) } } pub const HIGH_PRIO: Priority = Priority::from(3); pub const NORMAL_PRIO: Priority = Priority::from(2); pub const LOW_PRIO: Priority = Priority::from(1); /// A handle, identifying a socket #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Default, Hash)] pub struct Handle(usize); pub const NSEC_PER_SEC: u64 = 1_000_000_000; pub const FUTEX_RELATIVE_TIMEOUT: u32 = 1; pub const CLOCK_REALTIME: u64 = 1; pub const CLOCK_MONOTONIC: u64 = 4; pub const STDIN_FILENO: libc::c_int = 0; pub const STDOUT_FILENO: libc::c_int = 1; pub const STDERR_FILENO: libc::c_int = 2; pub const O_RDONLY: i32 = 0o0; pub const O_WRONLY: i32 = 0o1; pub const O_RDWR: i32 = 0o2; pub const O_CREAT: i32 = 0o100; pub const O_EXCL: i32 = 0o200; pub const O_TRUNC: i32 = 0o1000; pub const O_APPEND: i32 = 0o2000; /// returns true if file descriptor `fd` is a tty pub fn isatty(_fd: libc::c_int) -> bool { false } /// initialize the network stack pub fn network_init() -> i32 { unsafe { sys_network_init() } } /// `timespec` is used by `clock_gettime` to retrieve the /// current time #[derive(Copy, Clone, Debug)] #[repr(C)] pub struct timespec { /// seconds pub tv_sec: i64, /// nanoseconds pub tv_nsec: i64, } /// Internet protocol version. #[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)] pub enum Version { Unspecified, Ipv4, Ipv6, } /// A four-octet IPv4 address. #[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)] pub struct Ipv4Address(pub [u8; 4]); /// A sixteen-octet IPv6 address. #[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Default)] pub struct Ipv6Address(pub [u8; 16]); /// An internetworking address. #[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)] pub enum IpAddress { /// An unspecified address. /// May be used as a placeholder for storage where the address is not assigned yet. Unspecified, /// An IPv4 address. Ipv4(Ipv4Address), /// An IPv6 address. Ipv6(Ipv6Address), } /// determines the number of activated processors #[inline(always)] pub unsafe fn get_processor_count() -> usize { sys_get_processor_count() } #[doc(hidden)] #[inline(always)] pub unsafe fn malloc(size: usize, align: usize) -> *mut u8 { sys_malloc(size, align) } #[doc(hidden)] #[inline(always)] pub unsafe fn realloc(ptr: *mut u8, size: usize, align: usize, new_size: usize) -> *mut u8 { sys_realloc(ptr, size, align, new_size) } #[doc(hidden)] #[inline(always)] pub unsafe fn free(ptr: *mut u8, size: usize, align: usize) { sys_free(ptr, size, align) } #[inline(always)] pub unsafe fn notify(id: usize, count: i32) -> i32 { sys_notify(id, count) } #[doc(hidden)] #[inline(always)] pub unsafe fn add_queue(id: usize, timeout_ns: i64) -> i32 { sys_add_queue(id, timeout_ns) } #[doc(hidden)] #[inline(always)] pub unsafe fn wait(id: usize) -> i32 { sys_wait(id) } #[doc(hidden)] #[inline(always)] pub unsafe fn init_queue(id: usize) -> i32 { sys_init_queue(id) } #[doc(hidden)] #[inline(always)] pub unsafe fn destroy_queue(id: usize) -> i32 { sys_destroy_queue(id) } /// read from a file descriptor /// /// read() attempts to read `len` bytes of data from the object /// referenced by the descriptor `fd` into the buffer pointed /// to by `buf`. #[inline(always)] pub unsafe fn read(fd: i32, buf: *mut u8, len: usize) -> isize { sys_read(fd, buf, len) } /// write to a file descriptor /// /// write() attempts to write `len` of data to the object /// referenced by the descriptor `fd` from the /// buffer pointed to by `buf`. #[inline(always)] pub unsafe fn write(fd: i32, buf: *const u8, len: usize) -> isize { sys_write(fd, buf, len) } /// close a file descriptor /// /// The close() call deletes a file descriptor `fd` from the object /// reference table. #[inline(always)] pub unsafe fn close(fd: i32) -> i32 { sys_close(fd) } /// If the value at address matches the expected value, park the current thread until it is either /// woken up with [`futex_wake`] (returns 0) or an optional timeout elapses (returns -ETIMEDOUT). /// /// Setting `timeout` to null means the function will only return if [`futex_wake`] is called. /// Otherwise, `timeout` is interpreted as an absolute time measured with [`CLOCK_MONOTONIC`]. /// If [`FUTEX_RELATIVE_TIMEOUT`] is set in `flags` the timeout is understood to be relative /// to the current time. /// /// Returns -EINVAL if `address` is null, the timeout is negative or `flags` contains unknown values. #[inline(always)] pub unsafe fn futex_wait( address: *mut u32, expected: u32, timeout: *const timespec, flags: u32, ) -> i32 { sys_futex_wait(address, expected, timeout, flags) } /// Wake `count` threads waiting on the futex at `address`. Returns the number of threads /// woken up (saturates to `i32::MAX`). If `count` is `i32::MAX`, wake up all matching /// waiting threads. If `count` is negative or `address` is null, returns -EINVAL. #[inline(always)] pub unsafe fn futex_wake(address: *mut u32, count: i32) -> i32 { sys_futex_wake(address, count) } /// sem_init() initializes the unnamed semaphore at the address /// pointed to by `sem`. The `value` argument specifies the /// initial value for the semaphore. #[inline(always)] pub unsafe fn sem_init(sem: *mut *const c_void, value: u32) -> i32 { sys_sem_init(sem, value) } /// sem_destroy() frees the unnamed semaphore at the address /// pointed to by `sem`. #[inline(always)] pub unsafe fn sem_destroy(sem: *const c_void) -> i32 { sys_sem_destroy(sem) } /// sem_post() increments the semaphore pointed to by `sem`. /// If the semaphore's value consequently becomes greater /// than zero, then another thread blocked in a sem_wait call /// will be woken up and proceed to lock the semaphore. #[inline(always)] pub unsafe fn sem_post(sem: *const c_void) -> i32 { sys_sem_post(sem) } /// try to decrement a semaphore /// /// sem_trywait() is the same as sem_timedwait(), except that /// if the decrement cannot be immediately performed, then call /// returns a negative value instead of blocking. #[inline(always)] pub unsafe fn sem_trywait(sem: *const c_void) -> i32 { sys_sem_trywait(sem) } /// decrement a semaphore /// /// sem_timedwait() decrements the semaphore pointed to by `sem`. /// If the semaphore's value is greater than zero, then the /// the function returns immediately. If the semaphore currently /// has the value zero, then the call blocks until either /// it becomes possible to perform the decrement of the time limit /// to wait for the semaphore is expired. A time limit `ms` of /// means infinity waiting time. #[inline(always)] pub unsafe fn sem_timedwait(sem: *const c_void, ms: u32) -> i32 { sys_sem_timedwait(sem, ms) } #[doc(hidden)] #[inline(always)] pub unsafe fn recmutex_init(recmutex: *mut *const c_void) -> i32 { sys_recmutex_init(recmutex) } #[doc(hidden)] #[inline(always)] pub unsafe fn recmutex_destroy(recmutex: *const c_void) -> i32 { sys_recmutex_destroy(recmutex) } #[doc(hidden)] #[inline(always)] pub unsafe fn recmutex_lock(recmutex: *const c_void) -> i32 { sys_recmutex_lock(recmutex) } #[doc(hidden)] #[inline(always)] pub unsafe fn recmutex_unlock(recmutex: *const c_void) -> i32 { sys_recmutex_unlock(recmutex) } /// Determines the id of the current thread #[inline(always)] pub unsafe fn getpid() -> u32 { sys_getpid() } /// cause normal termination and return `arg` /// to the host system #[inline(always)] pub unsafe fn exit(arg: i32) -> ! { sys_exit(arg) } /// cause abnormal termination #[inline(always)] pub unsafe fn abort() -> ! { sys_abort() } /// suspend execution for microsecond intervals /// /// The usleep() function suspends execution of the calling /// thread for (at least) `usecs` microseconds. #[inline(always)] pub unsafe fn usleep(usecs: u64) { sys_usleep(usecs) } /// spawn a new thread /// /// spawn() starts a new thread. The new thread starts execution /// by invoking `func(usize)`; `arg` is passed as the argument /// to `func`. `prio` defines the priority of the new thread, /// which can be between `LOW_PRIO` and `HIGH_PRIO`. /// `core_id` defines the core, where the thread is located. /// A negative value give the operating system the possibility /// to select the core by its own. #[inline(always)] pub unsafe fn spawn( id: *mut Tid, func: extern "C" fn(usize), arg: usize, prio: u8, core_id: isize, ) -> i32 { sys_spawn(id, func, arg, prio, core_id) } /// spawn a new thread with user-specified stack size /// /// spawn2() starts a new thread. The new thread starts execution /// by invoking `func(usize)`; `arg` is passed as the argument /// to `func`. `prio` defines the priority of the new thread, /// which can be between `LOW_PRIO` and `HIGH_PRIO`. /// `core_id` defines the core, where the thread is located. /// A negative value give the operating system the possibility /// to select the core by its own. /// In contrast to spawn(), spawn2() is able to define the /// stack size. #[inline(always)] pub unsafe fn spawn2( func: extern "C" fn(usize), arg: usize, prio: u8, stack_size: usize, core_id: isize, ) -> Tid { sys_spawn2(func, arg, prio, stack_size, core_id) } /// join with a terminated thread /// /// The join() function waits for the thread specified by `id` /// to terminate. #[inline(always)] pub unsafe fn join(id: Tid) -> i32 { sys_join(id) } /// yield the processor /// /// causes the calling thread to relinquish the CPU. The thread /// is moved to the end of the queue for its static priority. #[inline(always)] pub unsafe fn yield_now() { sys_yield() } /// get current time /// /// The clock_gettime() functions allow the calling thread /// to retrieve the value used by a clock which is specified /// by `clock_id`. /// /// `CLOCK_REALTIME`: the system's real time clock, /// expressed as the amount of time since the Epoch. /// /// `CLOCK_MONOTONIC`: clock that increments monotonically, /// tracking the time since an arbitrary point #[inline(always)] pub unsafe fn clock_gettime(clock_id: u64, tp: *mut timespec) -> i32 { sys_clock_gettime(clock_id, tp) } /// open and possibly create a file /// /// The open() system call opens the file specified by `name`. /// If the specified file does not exist, it may optionally /// be created by open(). #[inline(always)] pub unsafe fn open(name: *const i8, flags: i32, mode: i32) -> i32 { sys_open(name, flags, mode) } /// delete the file it refers to `name` #[inline(always)] pub unsafe fn unlink(name: *const i8) -> i32 { sys_unlink(name) } /// The largest number `rand` will return pub const RAND_MAX: u64 = 2_147_483_647; /// The function computes a sequence of pseudo-random integers /// in the range of 0 to RAND_MAX #[inline(always)] pub unsafe fn rand() -> u32 { sys_rand() } /// The function sets its argument as the seed for a new sequence /// of pseudo-random numbers to be returned by `rand` #[inline(always)] pub unsafe fn srand(seed: u32) { sys_srand(seed); } /// Create a cryptographicly secure 32bit random number with the support of /// the underlying hardware. If the required hardware isn't available, /// the function returns `None`. #[inline(always)] pub unsafe fn secure_rand32() -> Option { let mut rand = MaybeUninit::uninit(); let res = sys_secure_rand32(rand.as_mut_ptr()); (res == 0).then(|| rand.assume_init()) } /// Create a cryptographicly secure 64bit random number with the support of /// the underlying hardware. If the required hardware isn't available, /// the function returns `None`. #[inline(always)] pub unsafe fn secure_rand64() -> Option { let mut rand = MaybeUninit::uninit(); let res = sys_secure_rand64(rand.as_mut_ptr()); (res == 0).then(|| rand.assume_init()) } /// Add current task to the queue of blocked tasks. After calling `block_current_task`, /// call `yield_now` to switch to another task. #[inline(always)] pub unsafe fn block_current_task() { sys_block_current_task(); } /// Add current task to the queue of blocked tasks, but wake it when `timeout` milliseconds /// have elapsed. /// /// After calling `block_current_task`, call `yield_now` to switch to another task. #[inline(always)] pub unsafe fn block_current_task_with_timeout(timeout: u64) { sys_block_current_task_with_timeout(timeout); } /// Wakeup task with the thread id `tid` #[inline(always)] pub unsafe fn wakeup_task(tid: Tid) { sys_wakeup_task(tid); } /// Determine the priority of the current thread #[inline(always)] pub unsafe fn get_priority() -> Priority { Priority::from(sys_get_priority()) } /// Determine the priority of the current thread #[inline(always)] pub unsafe fn set_priority(tid: Tid, prio: Priority) { sys_set_priority(tid, prio.into()); }