//! A hash set implemented using `IndexMap` #[cfg(feature = "rayon")] pub use crate::rayon::set as rayon; #[cfg(has_std)] use std::collections::hash_map::RandomState; use crate::vec::{self, Vec}; use core::cmp::Ordering; use core::fmt; use core::hash::{BuildHasher, Hash}; use core::iter::{Chain, FusedIterator}; use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; use core::slice; use super::{Entries, Equivalent, IndexMap}; type Bucket = super::Bucket; /// A hash set where the iteration order of the values is independent of their /// hash values. /// /// The interface is closely compatible with the standard `HashSet`, but also /// has additional features. /// /// # Order /// /// The values have a consistent order that is determined by the sequence of /// insertion and removal calls on the set. The order does not depend on the /// values or the hash function at all. Note that insertion order and value /// are not affected if a re-insertion is attempted once an element is /// already present. /// /// All iterators traverse the set *in order*. Set operation iterators like /// `union` produce a concatenated order, as do their matching "bitwise" /// operators. See their documentation for specifics. /// /// The insertion order is preserved, with **notable exceptions** like the /// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of /// course result in a new order, depending on the sorting order. /// /// # Indices /// /// The values are indexed in a compact range without holes in the range /// `0..self.len()`. For example, the method `.get_full` looks up the index for /// a value, and the method `.get_index` looks up the value by index. /// /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// // Collects which letters appear in a sentence. /// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect(); /// /// assert!(letters.contains(&'s')); /// assert!(letters.contains(&'t')); /// assert!(letters.contains(&'u')); /// assert!(!letters.contains(&'y')); /// ``` #[cfg(has_std)] pub struct IndexSet { pub(crate) map: IndexMap, } #[cfg(not(has_std))] pub struct IndexSet { pub(crate) map: IndexMap, } impl Clone for IndexSet where T: Clone, S: Clone, { fn clone(&self) -> Self { IndexSet { map: self.map.clone(), } } fn clone_from(&mut self, other: &Self) { self.map.clone_from(&other.map); } } impl Entries for IndexSet { type Entry = Bucket; #[inline] fn into_entries(self) -> Vec { self.map.into_entries() } #[inline] fn as_entries(&self) -> &[Self::Entry] { self.map.as_entries() } #[inline] fn as_entries_mut(&mut self) -> &mut [Self::Entry] { self.map.as_entries_mut() } fn with_entries(&mut self, f: F) where F: FnOnce(&mut [Self::Entry]), { self.map.with_entries(f); } } impl fmt::Debug for IndexSet where T: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if cfg!(not(feature = "test_debug")) { f.debug_set().entries(self.iter()).finish() } else { // Let the inner `IndexMap` print all of its details f.debug_struct("IndexSet").field("map", &self.map).finish() } } } #[cfg(has_std)] impl IndexSet { /// Create a new set. (Does not allocate.) pub fn new() -> Self { IndexSet { map: IndexMap::new(), } } /// Create a new set with capacity for `n` elements. /// (Does not allocate if `n` is zero.) /// /// Computes in **O(n)** time. pub fn with_capacity(n: usize) -> Self { IndexSet { map: IndexMap::with_capacity(n), } } } impl IndexSet { /// Create a new set with capacity for `n` elements. /// (Does not allocate if `n` is zero.) /// /// Computes in **O(n)** time. pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { IndexSet { map: IndexMap::with_capacity_and_hasher(n, hash_builder), } } /// Create a new set with `hash_builder`. /// /// This function is `const`, so it /// can be called in `static` contexts. pub const fn with_hasher(hash_builder: S) -> Self { IndexSet { map: IndexMap::with_hasher(hash_builder), } } /// Computes in **O(1)** time. pub fn capacity(&self) -> usize { self.map.capacity() } /// Return a reference to the set's `BuildHasher`. pub fn hasher(&self) -> &S { self.map.hasher() } /// Return the number of elements in the set. /// /// Computes in **O(1)** time. pub fn len(&self) -> usize { self.map.len() } /// Returns true if the set contains no elements. /// /// Computes in **O(1)** time. pub fn is_empty(&self) -> bool { self.map.is_empty() } /// Return an iterator over the values of the set, in their order pub fn iter(&self) -> Iter<'_, T> { Iter { iter: self.map.as_entries().iter(), } } /// Remove all elements in the set, while preserving its capacity. /// /// Computes in **O(n)** time. pub fn clear(&mut self) { self.map.clear(); } /// Shortens the set, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than the set's current length, this has no effect. pub fn truncate(&mut self, len: usize) { self.map.truncate(len); } /// Clears the `IndexSet` in the given index range, returning those values /// as a drain iterator. /// /// The range may be any type that implements `RangeBounds`, /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To drain the set entirely, use `RangeFull` /// like `set.drain(..)`. /// /// This shifts down all entries following the drained range to fill the /// gap, and keeps the allocated memory for reuse. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the set. pub fn drain(&mut self, range: R) -> Drain<'_, T> where R: RangeBounds, { Drain { iter: self.map.drain(range).iter, } } /// Splits the collection into two at the given index. /// /// Returns a newly allocated set containing the elements in the range /// `[at, len)`. After the call, the original set will be left containing /// the elements `[0, at)` with its previous capacity unchanged. /// /// ***Panics*** if `at > len`. pub fn split_off(&mut self, at: usize) -> Self where S: Clone, { Self { map: self.map.split_off(at), } } } impl IndexSet where T: Hash + Eq, S: BuildHasher, { /// Reserve capacity for `additional` more values. /// /// Computes in **O(n)** time. pub fn reserve(&mut self, additional: usize) { self.map.reserve(additional); } /// Shrink the capacity of the set as much as possible. /// /// Computes in **O(n)** time. pub fn shrink_to_fit(&mut self) { self.map.shrink_to_fit(); } /// Shrink the capacity of the set with a lower limit. /// /// Computes in **O(n)** time. pub fn shrink_to(&mut self, min_capacity: usize) { self.map.shrink_to(min_capacity); } /// Insert the value into the set. /// /// If an equivalent item already exists in the set, it returns /// `false` leaving the original value in the set and without /// altering its insertion order. Otherwise, it inserts the new /// item and returns `true`. /// /// Computes in **O(1)** time (amortized average). pub fn insert(&mut self, value: T) -> bool { self.map.insert(value, ()).is_none() } /// Insert the value into the set, and get its index. /// /// If an equivalent item already exists in the set, it returns /// the index of the existing item and `false`, leaving the /// original value in the set and without altering its insertion /// order. Otherwise, it inserts the new item and returns the index /// of the inserted item and `true`. /// /// Computes in **O(1)** time (amortized average). pub fn insert_full(&mut self, value: T) -> (usize, bool) { use super::map::Entry::*; match self.map.entry(value) { Occupied(e) => (e.index(), false), Vacant(e) => { let index = e.index(); e.insert(()); (index, true) } } } /// Return an iterator over the values that are in `self` but not `other`. /// /// Values are produced in the same order that they appear in `self`. pub fn difference<'a, S2>(&'a self, other: &'a IndexSet) -> Difference<'a, T, S2> where S2: BuildHasher, { Difference { iter: self.iter(), other, } } /// Return an iterator over the values that are in `self` or `other`, /// but not in both. /// /// Values from `self` are produced in their original order, followed by /// values from `other` in their original order. pub fn symmetric_difference<'a, S2>( &'a self, other: &'a IndexSet, ) -> SymmetricDifference<'a, T, S, S2> where S2: BuildHasher, { SymmetricDifference { iter: self.difference(other).chain(other.difference(self)), } } /// Return an iterator over the values that are in both `self` and `other`. /// /// Values are produced in the same order that they appear in `self`. pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet) -> Intersection<'a, T, S2> where S2: BuildHasher, { Intersection { iter: self.iter(), other, } } /// Return an iterator over all values that are in `self` or `other`. /// /// Values from `self` are produced in their original order, followed by /// values that are unique to `other` in their original order. pub fn union<'a, S2>(&'a self, other: &'a IndexSet) -> Union<'a, T, S> where S2: BuildHasher, { Union { iter: self.iter().chain(other.difference(self)), } } /// Return `true` if an equivalent to `value` exists in the set. /// /// Computes in **O(1)** time (average). pub fn contains(&self, value: &Q) -> bool where Q: Hash + Equivalent, { self.map.contains_key(value) } /// Return a reference to the value stored in the set, if it is present, /// else `None`. /// /// Computes in **O(1)** time (average). pub fn get(&self, value: &Q) -> Option<&T> where Q: Hash + Equivalent, { self.map.get_key_value(value).map(|(x, &())| x) } /// Return item index and value pub fn get_full(&self, value: &Q) -> Option<(usize, &T)> where Q: Hash + Equivalent, { self.map.get_full(value).map(|(i, x, &())| (i, x)) } /// Return item index, if it exists in the set pub fn get_index_of(&self, value: &Q) -> Option where Q: Hash + Equivalent, { self.map.get_index_of(value) } /// Adds a value to the set, replacing the existing value, if any, that is /// equal to the given one, without altering its insertion order. Returns /// the replaced value. /// /// Computes in **O(1)** time (average). pub fn replace(&mut self, value: T) -> Option { self.replace_full(value).1 } /// Adds a value to the set, replacing the existing value, if any, that is /// equal to the given one, without altering its insertion order. Returns /// the index of the item and its replaced value. /// /// Computes in **O(1)** time (average). pub fn replace_full(&mut self, value: T) -> (usize, Option) { use super::map::Entry::*; match self.map.entry(value) { Vacant(e) => { let index = e.index(); e.insert(()); (index, None) } Occupied(e) => (e.index(), Some(e.replace_key())), } } /// Remove the value from the set, and return `true` if it was present. /// /// **NOTE:** This is equivalent to `.swap_remove(value)`, if you want /// to preserve the order of the values in the set, use `.shift_remove(value)`. /// /// Computes in **O(1)** time (average). pub fn remove(&mut self, value: &Q) -> bool where Q: Hash + Equivalent, { self.swap_remove(value) } /// Remove the value from the set, and return `true` if it was present. /// /// Like `Vec::swap_remove`, the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `false` if `value` was not in the set. /// /// Computes in **O(1)** time (average). pub fn swap_remove(&mut self, value: &Q) -> bool where Q: Hash + Equivalent, { self.map.swap_remove(value).is_some() } /// Remove the value from the set, and return `true` if it was present. /// /// Like `Vec::remove`, the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `false` if `value` was not in the set. /// /// Computes in **O(n)** time (average). pub fn shift_remove(&mut self, value: &Q) -> bool where Q: Hash + Equivalent, { self.map.shift_remove(value).is_some() } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// **NOTE:** This is equivalent to `.swap_take(value)`, if you need to /// preserve the order of the values in the set, use `.shift_take(value)` /// instead. /// /// Computes in **O(1)** time (average). pub fn take(&mut self, value: &Q) -> Option where Q: Hash + Equivalent, { self.swap_take(value) } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// Like `Vec::swap_remove`, the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `value` was not in the set. /// /// Computes in **O(1)** time (average). pub fn swap_take(&mut self, value: &Q) -> Option where Q: Hash + Equivalent, { self.map.swap_remove_entry(value).map(|(x, ())| x) } /// Removes and returns the value in the set, if any, that is equal to the /// given one. /// /// Like `Vec::remove`, the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `value` was not in the set. /// /// Computes in **O(n)** time (average). pub fn shift_take(&mut self, value: &Q) -> Option where Q: Hash + Equivalent, { self.map.shift_remove_entry(value).map(|(x, ())| x) } /// Remove the value from the set return it and the index it had. /// /// Like `Vec::swap_remove`, the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `value` was not in the set. pub fn swap_remove_full(&mut self, value: &Q) -> Option<(usize, T)> where Q: Hash + Equivalent, { self.map.swap_remove_full(value).map(|(i, x, ())| (i, x)) } /// Remove the value from the set return it and the index it had. /// /// Like `Vec::remove`, the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `value` was not in the set. pub fn shift_remove_full(&mut self, value: &Q) -> Option<(usize, T)> where Q: Hash + Equivalent, { self.map.shift_remove_full(value).map(|(i, x, ())| (i, x)) } /// Remove the last value /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). pub fn pop(&mut self) -> Option { self.map.pop().map(|(x, ())| x) } /// Scan through each value in the set and keep those where the /// closure `keep` returns `true`. /// /// The elements are visited in order, and remaining elements keep their /// order. /// /// Computes in **O(n)** time (average). pub fn retain(&mut self, mut keep: F) where F: FnMut(&T) -> bool, { self.map.retain(move |x, &mut ()| keep(x)) } /// Sort the set’s values by their default ordering. /// /// See [`sort_by`](Self::sort_by) for details. pub fn sort(&mut self) where T: Ord, { self.map.sort_keys() } /// Sort the set’s values in place using the comparison function `cmp`. /// /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. pub fn sort_by(&mut self, mut cmp: F) where F: FnMut(&T, &T) -> Ordering, { self.map.sort_by(move |a, _, b, _| cmp(a, b)); } /// Sort the values of the set and return a by-value iterator of /// the values with the result. /// /// The sort is stable. pub fn sorted_by(self, mut cmp: F) -> IntoIter where F: FnMut(&T, &T) -> Ordering, { let mut entries = self.into_entries(); entries.sort_by(move |a, b| cmp(&a.key, &b.key)); IntoIter { iter: entries.into_iter(), } } /// Sort the set's values by their default ordering. /// /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. pub fn sort_unstable(&mut self) where T: Ord, { self.map.sort_unstable_keys() } /// Sort the set's values in place using the comparison funtion `cmp`. /// /// Computes in **O(n log n)** time. The sort is unstable. pub fn sort_unstable_by(&mut self, mut cmp: F) where F: FnMut(&T, &T) -> Ordering, { self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b)) } /// Sort the values of the set and return a by-value iterator of /// the values with the result. pub fn sorted_unstable_by(self, mut cmp: F) -> IntoIter where F: FnMut(&T, &T) -> Ordering, { let mut entries = self.into_entries(); entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key)); IntoIter { iter: entries.into_iter(), } } /// Reverses the order of the set’s values in place. /// /// Computes in **O(n)** time and **O(1)** space. pub fn reverse(&mut self) { self.map.reverse() } } impl IndexSet { /// Get a value by index /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_index(&self, index: usize) -> Option<&T> { self.as_entries().get(index).map(Bucket::key_ref) } /// Get the first value /// /// Computes in **O(1)** time. pub fn first(&self) -> Option<&T> { self.as_entries().first().map(Bucket::key_ref) } /// Get the last value /// /// Computes in **O(1)** time. pub fn last(&self) -> Option<&T> { self.as_entries().last().map(Bucket::key_ref) } /// Remove the value by index /// /// Valid indices are *0 <= index < self.len()* /// /// Like `Vec::swap_remove`, the value is removed by swapping it with the /// last element of the set and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_index(&mut self, index: usize) -> Option { self.map.swap_remove_index(index).map(|(x, ())| x) } /// Remove the value by index /// /// Valid indices are *0 <= index < self.len()* /// /// Like `Vec::remove`, the value is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn shift_remove_index(&mut self, index: usize) -> Option { self.map.shift_remove_index(index).map(|(x, ())| x) } /// Moves the position of a value from one index to another /// by shifting all other values in-between. /// /// * If `from < to`, the other values will shift down while the targeted value moves up. /// * If `from > to`, the other values will shift up while the targeted value moves down. /// /// ***Panics*** if `from` or `to` are out of bounds. /// /// Computes in **O(n)** time (average). pub fn move_index(&mut self, from: usize, to: usize) { self.map.move_index(from, to) } /// Swaps the position of two values in the set. /// /// ***Panics*** if `a` or `b` are out of bounds. pub fn swap_indices(&mut self, a: usize, b: usize) { self.map.swap_indices(a, b) } } /// Access `IndexSet` values at indexed positions. /// /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// let mut set = IndexSet::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// set.insert(word.to_string()); /// } /// assert_eq!(set[0], "Lorem"); /// assert_eq!(set[1], "ipsum"); /// set.reverse(); /// assert_eq!(set[0], "amet"); /// assert_eq!(set[1], "sit"); /// set.sort(); /// assert_eq!(set[0], "Lorem"); /// assert_eq!(set[1], "amet"); /// ``` /// /// ```should_panic /// use indexmap::IndexSet; /// /// let mut set = IndexSet::new(); /// set.insert("foo"); /// println!("{:?}", set[10]); // panics! /// ``` impl Index for IndexSet { type Output = T; /// Returns a reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index(&self, index: usize) -> &T { self.get_index(index) .expect("IndexSet: index out of bounds") } } /// An owning iterator over the items of a `IndexSet`. /// /// This `struct` is created by the [`into_iter`] method on [`IndexSet`] /// (provided by the `IntoIterator` trait). See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`into_iter`]: struct.IndexSet.html#method.into_iter pub struct IntoIter { iter: vec::IntoIter>, } impl Iterator for IntoIter { type Item = T; iterator_methods!(Bucket::key); } impl DoubleEndedIterator for IntoIter { double_ended_iterator_methods!(Bucket::key); } impl ExactSizeIterator for IntoIter { fn len(&self) -> usize { self.iter.len() } } impl FusedIterator for IntoIter {} impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let iter = self.iter.as_slice().iter().map(Bucket::key_ref); f.debug_list().entries(iter).finish() } } /// An iterator over the items of a `IndexSet`. /// /// This `struct` is created by the [`iter`] method on [`IndexSet`]. /// See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`iter`]: struct.IndexSet.html#method.iter pub struct Iter<'a, T> { iter: slice::Iter<'a, Bucket>, } impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; iterator_methods!(Bucket::key_ref); } impl DoubleEndedIterator for Iter<'_, T> { double_ended_iterator_methods!(Bucket::key_ref); } impl ExactSizeIterator for Iter<'_, T> { fn len(&self) -> usize { self.iter.len() } } impl FusedIterator for Iter<'_, T> {} impl Clone for Iter<'_, T> { fn clone(&self) -> Self { Iter { iter: self.iter.clone(), } } } impl fmt::Debug for Iter<'_, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A draining iterator over the items of a `IndexSet`. /// /// This `struct` is created by the [`drain`] method on [`IndexSet`]. /// See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`drain`]: struct.IndexSet.html#method.drain pub struct Drain<'a, T> { iter: vec::Drain<'a, Bucket>, } impl Iterator for Drain<'_, T> { type Item = T; iterator_methods!(Bucket::key); } impl DoubleEndedIterator for Drain<'_, T> { double_ended_iterator_methods!(Bucket::key); } impl ExactSizeIterator for Drain<'_, T> { fn len(&self) -> usize { self.iter.len() } } impl FusedIterator for Drain<'_, T> {} impl fmt::Debug for Drain<'_, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let iter = self.iter.as_slice().iter().map(Bucket::key_ref); f.debug_list().entries(iter).finish() } } impl<'a, T, S> IntoIterator for &'a IndexSet { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl IntoIterator for IndexSet { type Item = T; type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { IntoIter { iter: self.into_entries().into_iter(), } } } impl FromIterator for IndexSet where T: Hash + Eq, S: BuildHasher + Default, { fn from_iter>(iterable: I) -> Self { let iter = iterable.into_iter().map(|x| (x, ())); IndexSet { map: IndexMap::from_iter(iter), } } } #[cfg(has_std)] impl From<[T; N]> for IndexSet where T: Eq + Hash, { /// # Examples /// /// ``` /// use indexmap::IndexSet; /// /// let set1 = IndexSet::from([1, 2, 3, 4]); /// let set2: IndexSet<_> = [1, 2, 3, 4].into(); /// assert_eq!(set1, set2); /// ``` fn from(arr: [T; N]) -> Self { Self::from_iter(arr) } } impl Extend for IndexSet where T: Hash + Eq, S: BuildHasher, { fn extend>(&mut self, iterable: I) { let iter = iterable.into_iter().map(|x| (x, ())); self.map.extend(iter); } } impl<'a, T, S> Extend<&'a T> for IndexSet where T: Hash + Eq + Copy + 'a, S: BuildHasher, { fn extend>(&mut self, iterable: I) { let iter = iterable.into_iter().copied(); self.extend(iter); } } impl Default for IndexSet where S: Default, { /// Return an empty `IndexSet` fn default() -> Self { IndexSet { map: IndexMap::default(), } } } impl PartialEq> for IndexSet where T: Hash + Eq, S1: BuildHasher, S2: BuildHasher, { fn eq(&self, other: &IndexSet) -> bool { self.len() == other.len() && self.is_subset(other) } } impl Eq for IndexSet where T: Eq + Hash, S: BuildHasher, { } impl IndexSet where T: Eq + Hash, S: BuildHasher, { /// Returns `true` if `self` has no elements in common with `other`. pub fn is_disjoint(&self, other: &IndexSet) -> bool where S2: BuildHasher, { if self.len() <= other.len() { self.iter().all(move |value| !other.contains(value)) } else { other.iter().all(move |value| !self.contains(value)) } } /// Returns `true` if all elements of `self` are contained in `other`. pub fn is_subset(&self, other: &IndexSet) -> bool where S2: BuildHasher, { self.len() <= other.len() && self.iter().all(move |value| other.contains(value)) } /// Returns `true` if all elements of `other` are contained in `self`. pub fn is_superset(&self, other: &IndexSet) -> bool where S2: BuildHasher, { other.is_subset(self) } } /// A lazy iterator producing elements in the difference of `IndexSet`s. /// /// This `struct` is created by the [`difference`] method on [`IndexSet`]. /// See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`difference`]: struct.IndexSet.html#method.difference pub struct Difference<'a, T, S> { iter: Iter<'a, T>, other: &'a IndexSet, } impl<'a, T, S> Iterator for Difference<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option { while let Some(item) = self.iter.next() { if !self.other.contains(item) { return Some(item); } } None } fn size_hint(&self) -> (usize, Option) { (0, self.iter.size_hint().1) } } impl DoubleEndedIterator for Difference<'_, T, S> where T: Eq + Hash, S: BuildHasher, { fn next_back(&mut self) -> Option { while let Some(item) = self.iter.next_back() { if !self.other.contains(item) { return Some(item); } } None } } impl FusedIterator for Difference<'_, T, S> where T: Eq + Hash, S: BuildHasher, { } impl Clone for Difference<'_, T, S> { fn clone(&self) -> Self { Difference { iter: self.iter.clone(), ..*self } } } impl fmt::Debug for Difference<'_, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A lazy iterator producing elements in the intersection of `IndexSet`s. /// /// This `struct` is created by the [`intersection`] method on [`IndexSet`]. /// See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`intersection`]: struct.IndexSet.html#method.intersection pub struct Intersection<'a, T, S> { iter: Iter<'a, T>, other: &'a IndexSet, } impl<'a, T, S> Iterator for Intersection<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option { while let Some(item) = self.iter.next() { if self.other.contains(item) { return Some(item); } } None } fn size_hint(&self) -> (usize, Option) { (0, self.iter.size_hint().1) } } impl DoubleEndedIterator for Intersection<'_, T, S> where T: Eq + Hash, S: BuildHasher, { fn next_back(&mut self) -> Option { while let Some(item) = self.iter.next_back() { if self.other.contains(item) { return Some(item); } } None } } impl FusedIterator for Intersection<'_, T, S> where T: Eq + Hash, S: BuildHasher, { } impl Clone for Intersection<'_, T, S> { fn clone(&self) -> Self { Intersection { iter: self.iter.clone(), ..*self } } } impl fmt::Debug for Intersection<'_, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A lazy iterator producing elements in the symmetric difference of `IndexSet`s. /// /// This `struct` is created by the [`symmetric_difference`] method on /// [`IndexSet`]. See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`symmetric_difference`]: struct.IndexSet.html#method.symmetric_difference pub struct SymmetricDifference<'a, T, S1, S2> { iter: Chain, Difference<'a, T, S1>>, } impl<'a, T, S1, S2> Iterator for SymmetricDifference<'a, T, S1, S2> where T: Eq + Hash, S1: BuildHasher, S2: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } fn fold(self, init: B, f: F) -> B where F: FnMut(B, Self::Item) -> B, { self.iter.fold(init, f) } } impl DoubleEndedIterator for SymmetricDifference<'_, T, S1, S2> where T: Eq + Hash, S1: BuildHasher, S2: BuildHasher, { fn next_back(&mut self) -> Option { self.iter.next_back() } fn rfold(self, init: B, f: F) -> B where F: FnMut(B, Self::Item) -> B, { self.iter.rfold(init, f) } } impl FusedIterator for SymmetricDifference<'_, T, S1, S2> where T: Eq + Hash, S1: BuildHasher, S2: BuildHasher, { } impl Clone for SymmetricDifference<'_, T, S1, S2> { fn clone(&self) -> Self { SymmetricDifference { iter: self.iter.clone(), } } } impl fmt::Debug for SymmetricDifference<'_, T, S1, S2> where T: fmt::Debug + Eq + Hash, S1: BuildHasher, S2: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A lazy iterator producing elements in the union of `IndexSet`s. /// /// This `struct` is created by the [`union`] method on [`IndexSet`]. /// See its documentation for more. /// /// [`IndexSet`]: struct.IndexSet.html /// [`union`]: struct.IndexSet.html#method.union pub struct Union<'a, T, S> { iter: Chain, Difference<'a, T, S>>, } impl<'a, T, S> Iterator for Union<'a, T, S> where T: Eq + Hash, S: BuildHasher, { type Item = &'a T; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } fn fold(self, init: B, f: F) -> B where F: FnMut(B, Self::Item) -> B, { self.iter.fold(init, f) } } impl DoubleEndedIterator for Union<'_, T, S> where T: Eq + Hash, S: BuildHasher, { fn next_back(&mut self) -> Option { self.iter.next_back() } fn rfold(self, init: B, f: F) -> B where F: FnMut(B, Self::Item) -> B, { self.iter.rfold(init, f) } } impl FusedIterator for Union<'_, T, S> where T: Eq + Hash, S: BuildHasher, { } impl Clone for Union<'_, T, S> { fn clone(&self) -> Self { Union { iter: self.iter.clone(), } } } impl fmt::Debug for Union<'_, T, S> where T: fmt::Debug + Eq + Hash, S: BuildHasher, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } impl BitAnd<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set intersection, cloned into a new set. /// /// Values are collected in the same order that they appear in `self`. fn bitand(self, other: &IndexSet) -> Self::Output { self.intersection(other).cloned().collect() } } impl BitOr<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set union, cloned into a new set. /// /// Values from `self` are collected in their original order, followed by /// values that are unique to `other` in their original order. fn bitor(self, other: &IndexSet) -> Self::Output { self.union(other).cloned().collect() } } impl BitXor<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set symmetric-difference, cloned into a new set. /// /// Values from `self` are collected in their original order, followed by /// values from `other` in their original order. fn bitxor(self, other: &IndexSet) -> Self::Output { self.symmetric_difference(other).cloned().collect() } } impl Sub<&IndexSet> for &IndexSet where T: Eq + Hash + Clone, S1: BuildHasher + Default, S2: BuildHasher, { type Output = IndexSet; /// Returns the set difference, cloned into a new set. /// /// Values are collected in the same order that they appear in `self`. fn sub(self, other: &IndexSet) -> Self::Output { self.difference(other).cloned().collect() } } #[cfg(test)] mod tests { use super::*; use std::string::String; #[test] fn it_works() { let mut set = IndexSet::new(); assert_eq!(set.is_empty(), true); set.insert(1); set.insert(1); assert_eq!(set.len(), 1); assert!(set.get(&1).is_some()); assert_eq!(set.is_empty(), false); } #[test] fn new() { let set = IndexSet::::new(); println!("{:?}", set); assert_eq!(set.capacity(), 0); assert_eq!(set.len(), 0); assert_eq!(set.is_empty(), true); } #[test] fn insert() { let insert = [0, 4, 2, 12, 8, 7, 11, 5]; let not_present = [1, 3, 6, 9, 10]; let mut set = IndexSet::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(set.len(), i); set.insert(elt); assert_eq!(set.len(), i + 1); assert_eq!(set.get(&elt), Some(&elt)); } println!("{:?}", set); for &elt in ¬_present { assert!(set.get(&elt).is_none()); } } #[test] fn insert_full() { let insert = vec![9, 2, 7, 1, 4, 6, 13]; let present = vec![1, 6, 2]; let mut set = IndexSet::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(set.len(), i); let (index, success) = set.insert_full(elt); assert!(success); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), i + 1); } let len = set.len(); for &elt in &present { let (index, success) = set.insert_full(elt); assert!(!success); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), len); } } #[test] fn insert_2() { let mut set = IndexSet::with_capacity(16); let mut values = vec![]; values.extend(0..16); values.extend(if cfg!(miri) { 32..64 } else { 128..267 }); for &i in &values { let old_set = set.clone(); set.insert(i); for value in old_set.iter() { if set.get(value).is_none() { println!("old_set: {:?}", old_set); println!("set: {:?}", set); panic!("did not find {} in set", value); } } } for &i in &values { assert!(set.get(&i).is_some(), "did not find {}", i); } } #[test] fn insert_dup() { let mut elements = vec![0, 2, 4, 6, 8]; let mut set: IndexSet = elements.drain(..).collect(); { let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(i, 0); assert_eq!(*v, 0); } { let inserted = set.insert(0); let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(inserted, false); assert_eq!(i, 0); assert_eq!(*v, 0); } } #[test] fn insert_order() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = IndexSet::new(); for &elt in &insert { set.insert(elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), insert.len()); for (a, b) in insert.iter().zip(set.iter()) { assert_eq!(a, b); } for (i, v) in (0..insert.len()).zip(set.iter()) { assert_eq!(set.get_index(i).unwrap(), v); } } #[test] fn replace() { let replace = [0, 4, 2, 12, 8, 7, 11, 5]; let not_present = [1, 3, 6, 9, 10]; let mut set = IndexSet::with_capacity(replace.len()); for (i, &elt) in replace.iter().enumerate() { assert_eq!(set.len(), i); set.replace(elt); assert_eq!(set.len(), i + 1); assert_eq!(set.get(&elt), Some(&elt)); } println!("{:?}", set); for &elt in ¬_present { assert!(set.get(&elt).is_none()); } } #[test] fn replace_full() { let replace = vec![9, 2, 7, 1, 4, 6, 13]; let present = vec![1, 6, 2]; let mut set = IndexSet::with_capacity(replace.len()); for (i, &elt) in replace.iter().enumerate() { assert_eq!(set.len(), i); let (index, replaced) = set.replace_full(elt); assert!(replaced.is_none()); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), i + 1); } let len = set.len(); for &elt in &present { let (index, replaced) = set.replace_full(elt); assert_eq!(Some(elt), replaced); assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); assert_eq!(set.len(), len); } } #[test] fn replace_2() { let mut set = IndexSet::with_capacity(16); let mut values = vec![]; values.extend(0..16); values.extend(if cfg!(miri) { 32..64 } else { 128..267 }); for &i in &values { let old_set = set.clone(); set.replace(i); for value in old_set.iter() { if set.get(value).is_none() { println!("old_set: {:?}", old_set); println!("set: {:?}", set); panic!("did not find {} in set", value); } } } for &i in &values { assert!(set.get(&i).is_some(), "did not find {}", i); } } #[test] fn replace_dup() { let mut elements = vec![0, 2, 4, 6, 8]; let mut set: IndexSet = elements.drain(..).collect(); { let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(i, 0); assert_eq!(*v, 0); } { let replaced = set.replace(0); let (i, v) = set.get_full(&0).unwrap(); assert_eq!(set.len(), 5); assert_eq!(replaced, Some(0)); assert_eq!(i, 0); assert_eq!(*v, 0); } } #[test] fn replace_order() { let replace = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = IndexSet::new(); for &elt in &replace { set.replace(elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), replace.len()); for (a, b) in replace.iter().zip(set.iter()) { assert_eq!(a, b); } for (i, v) in (0..replace.len()).zip(set.iter()) { assert_eq!(set.get_index(i).unwrap(), v); } } #[test] fn grow() { let insert = [0, 4, 2, 12, 8, 7, 11]; let not_present = [1, 3, 6, 9, 10]; let mut set = IndexSet::with_capacity(insert.len()); for (i, &elt) in insert.iter().enumerate() { assert_eq!(set.len(), i); set.insert(elt); assert_eq!(set.len(), i + 1); assert_eq!(set.get(&elt), Some(&elt)); } println!("{:?}", set); for &elt in &insert { set.insert(elt * 10); } for &elt in &insert { set.insert(elt * 100); } for (i, &elt) in insert.iter().cycle().enumerate().take(100) { set.insert(elt * 100 + i as i32); } println!("{:?}", set); for &elt in ¬_present { assert!(set.get(&elt).is_none()); } } #[test] fn reserve() { let mut set = IndexSet::::new(); assert_eq!(set.capacity(), 0); set.reserve(100); let capacity = set.capacity(); assert!(capacity >= 100); for i in 0..capacity { assert_eq!(set.len(), i); set.insert(i); assert_eq!(set.len(), i + 1); assert_eq!(set.capacity(), capacity); assert_eq!(set.get(&i), Some(&i)); } set.insert(capacity); assert_eq!(set.len(), capacity + 1); assert!(set.capacity() > capacity); assert_eq!(set.get(&capacity), Some(&capacity)); } #[test] fn shrink_to_fit() { let mut set = IndexSet::::new(); assert_eq!(set.capacity(), 0); for i in 0..100 { assert_eq!(set.len(), i); set.insert(i); assert_eq!(set.len(), i + 1); assert!(set.capacity() >= i + 1); assert_eq!(set.get(&i), Some(&i)); set.shrink_to_fit(); assert_eq!(set.len(), i + 1); assert_eq!(set.capacity(), i + 1); assert_eq!(set.get(&i), Some(&i)); } } #[test] fn remove() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = IndexSet::new(); for &elt in &insert { set.insert(elt); } assert_eq!(set.iter().count(), set.len()); assert_eq!(set.iter().count(), insert.len()); for (a, b) in insert.iter().zip(set.iter()) { assert_eq!(a, b); } let remove_fail = [99, 77]; let remove = [4, 12, 8, 7]; for &value in &remove_fail { assert!(set.swap_remove_full(&value).is_none()); } println!("{:?}", set); for &value in &remove { //println!("{:?}", set); let index = set.get_full(&value).unwrap().0; assert_eq!(set.swap_remove_full(&value), Some((index, value))); } println!("{:?}", set); for value in &insert { assert_eq!(set.get(value).is_some(), !remove.contains(value)); } assert_eq!(set.len(), insert.len() - remove.len()); assert_eq!(set.iter().count(), insert.len() - remove.len()); } #[test] fn swap_remove_index() { let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; let mut set = IndexSet::new(); for &elt in &insert { set.insert(elt); } let mut vector = insert.to_vec(); let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1]; // check that the same swap remove sequence on vec and set // have the same result. for &rm in remove_sequence { let out_vec = vector.swap_remove(rm); let out_set = set.swap_remove_index(rm).unwrap(); assert_eq!(out_vec, out_set); } assert_eq!(vector.len(), set.len()); for (a, b) in vector.iter().zip(set.iter()) { assert_eq!(a, b); } } #[test] fn partial_eq_and_eq() { let mut set_a = IndexSet::new(); set_a.insert(1); set_a.insert(2); let mut set_b = set_a.clone(); assert_eq!(set_a, set_b); set_b.swap_remove(&1); assert_ne!(set_a, set_b); let set_c: IndexSet<_> = set_b.into_iter().collect(); assert_ne!(set_a, set_c); assert_ne!(set_c, set_a); } #[test] fn extend() { let mut set = IndexSet::new(); set.extend(vec![&1, &2, &3, &4]); set.extend(vec![5, 6]); assert_eq!(set.into_iter().collect::>(), vec![1, 2, 3, 4, 5, 6]); } #[test] fn comparisons() { let set_a: IndexSet<_> = (0..3).collect(); let set_b: IndexSet<_> = (3..6).collect(); let set_c: IndexSet<_> = (0..6).collect(); let set_d: IndexSet<_> = (3..9).collect(); assert!(!set_a.is_disjoint(&set_a)); assert!(set_a.is_subset(&set_a)); assert!(set_a.is_superset(&set_a)); assert!(set_a.is_disjoint(&set_b)); assert!(set_b.is_disjoint(&set_a)); assert!(!set_a.is_subset(&set_b)); assert!(!set_b.is_subset(&set_a)); assert!(!set_a.is_superset(&set_b)); assert!(!set_b.is_superset(&set_a)); assert!(!set_a.is_disjoint(&set_c)); assert!(!set_c.is_disjoint(&set_a)); assert!(set_a.is_subset(&set_c)); assert!(!set_c.is_subset(&set_a)); assert!(!set_a.is_superset(&set_c)); assert!(set_c.is_superset(&set_a)); assert!(!set_c.is_disjoint(&set_d)); assert!(!set_d.is_disjoint(&set_c)); assert!(!set_c.is_subset(&set_d)); assert!(!set_d.is_subset(&set_c)); assert!(!set_c.is_superset(&set_d)); assert!(!set_d.is_superset(&set_c)); } #[test] fn iter_comparisons() { use std::iter::empty; fn check<'a, I1, I2>(iter1: I1, iter2: I2) where I1: Iterator, I2: Iterator, { assert!(iter1.copied().eq(iter2)); } let set_a: IndexSet<_> = (0..3).collect(); let set_b: IndexSet<_> = (3..6).collect(); let set_c: IndexSet<_> = (0..6).collect(); let set_d: IndexSet<_> = (3..9).rev().collect(); check(set_a.difference(&set_a), empty()); check(set_a.symmetric_difference(&set_a), empty()); check(set_a.intersection(&set_a), 0..3); check(set_a.union(&set_a), 0..3); check(set_a.difference(&set_b), 0..3); check(set_b.difference(&set_a), 3..6); check(set_a.symmetric_difference(&set_b), 0..6); check(set_b.symmetric_difference(&set_a), (3..6).chain(0..3)); check(set_a.intersection(&set_b), empty()); check(set_b.intersection(&set_a), empty()); check(set_a.union(&set_b), 0..6); check(set_b.union(&set_a), (3..6).chain(0..3)); check(set_a.difference(&set_c), empty()); check(set_c.difference(&set_a), 3..6); check(set_a.symmetric_difference(&set_c), 3..6); check(set_c.symmetric_difference(&set_a), 3..6); check(set_a.intersection(&set_c), 0..3); check(set_c.intersection(&set_a), 0..3); check(set_a.union(&set_c), 0..6); check(set_c.union(&set_a), 0..6); check(set_c.difference(&set_d), 0..3); check(set_d.difference(&set_c), (6..9).rev()); check( set_c.symmetric_difference(&set_d), (0..3).chain((6..9).rev()), ); check(set_d.symmetric_difference(&set_c), (6..9).rev().chain(0..3)); check(set_c.intersection(&set_d), 3..6); check(set_d.intersection(&set_c), (3..6).rev()); check(set_c.union(&set_d), (0..6).chain((6..9).rev())); check(set_d.union(&set_c), (3..9).rev().chain(0..3)); } #[test] fn ops() { let empty = IndexSet::::new(); let set_a: IndexSet<_> = (0..3).collect(); let set_b: IndexSet<_> = (3..6).collect(); let set_c: IndexSet<_> = (0..6).collect(); let set_d: IndexSet<_> = (3..9).rev().collect(); #[allow(clippy::eq_op)] { assert_eq!(&set_a & &set_a, set_a); assert_eq!(&set_a | &set_a, set_a); assert_eq!(&set_a ^ &set_a, empty); assert_eq!(&set_a - &set_a, empty); } assert_eq!(&set_a & &set_b, empty); assert_eq!(&set_b & &set_a, empty); assert_eq!(&set_a | &set_b, set_c); assert_eq!(&set_b | &set_a, set_c); assert_eq!(&set_a ^ &set_b, set_c); assert_eq!(&set_b ^ &set_a, set_c); assert_eq!(&set_a - &set_b, set_a); assert_eq!(&set_b - &set_a, set_b); assert_eq!(&set_a & &set_c, set_a); assert_eq!(&set_c & &set_a, set_a); assert_eq!(&set_a | &set_c, set_c); assert_eq!(&set_c | &set_a, set_c); assert_eq!(&set_a ^ &set_c, set_b); assert_eq!(&set_c ^ &set_a, set_b); assert_eq!(&set_a - &set_c, empty); assert_eq!(&set_c - &set_a, set_b); assert_eq!(&set_c & &set_d, set_b); assert_eq!(&set_d & &set_c, set_b); assert_eq!(&set_c | &set_d, &set_a | &set_d); assert_eq!(&set_d | &set_c, &set_a | &set_d); assert_eq!(&set_c ^ &set_d, &set_a | &(&set_d - &set_b)); assert_eq!(&set_d ^ &set_c, &set_a | &(&set_d - &set_b)); assert_eq!(&set_c - &set_d, set_a); assert_eq!(&set_d - &set_c, &set_d - &set_b); } #[test] #[cfg(has_std)] fn from_array() { let set1 = IndexSet::from([1, 2, 3, 4]); let set2: IndexSet<_> = [1, 2, 3, 4].into(); assert_eq!(set1, set2); } }