//! Iterators that are sources (produce elements from parameters, //! not from another iterator). #![allow(deprecated)] use std::fmt; use std::mem; /// See [`repeat_call`](crate::repeat_call) for more information. #[derive(Clone)] #[deprecated(note="Use std repeat_with() instead", since="0.8.0")] pub struct RepeatCall { f: F, } impl fmt::Debug for RepeatCall { debug_fmt_fields!(RepeatCall, ); } /// An iterator source that produces elements indefinitely by calling /// a given closure. /// /// Iterator element type is the return type of the closure. /// /// ``` /// use itertools::repeat_call; /// use itertools::Itertools; /// use std::collections::BinaryHeap; /// /// let mut heap = BinaryHeap::from(vec![2, 5, 3, 7, 8]); /// /// // extract each element in sorted order /// for element in repeat_call(|| heap.pop()).while_some() { /// print!("{}", element); /// } /// /// itertools::assert_equal( /// repeat_call(|| 1).take(5), /// vec![1, 1, 1, 1, 1] /// ); /// ``` #[deprecated(note="Use std repeat_with() instead", since="0.8.0")] pub fn repeat_call(function: F) -> RepeatCall where F: FnMut() -> A { RepeatCall { f: function } } impl Iterator for RepeatCall where F: FnMut() -> A { type Item = A; #[inline] fn next(&mut self) -> Option { Some((self.f)()) } fn size_hint(&self) -> (usize, Option) { (usize::max_value(), None) } } /// Creates a new unfold source with the specified closure as the "iterator /// function" and an initial state to eventually pass to the closure /// /// `unfold` is a general iterator builder: it has a mutable state value, /// and a closure with access to the state that produces the next value. /// /// This more or less equivalent to a regular struct with an [`Iterator`] /// implementation, and is useful for one-off iterators. /// /// ``` /// // an iterator that yields sequential Fibonacci numbers, /// // and stops at the maximum representable value. /// /// use itertools::unfold; /// /// let mut fibonacci = unfold((1u32, 1u32), |(x1, x2)| { /// // Attempt to get the next Fibonacci number /// let next = x1.saturating_add(*x2); /// /// // Shift left: ret <- x1 <- x2 <- next /// let ret = *x1; /// *x1 = *x2; /// *x2 = next; /// /// // If addition has saturated at the maximum, we are finished /// if ret == *x1 && ret > 1 { /// None /// } else { /// Some(ret) /// } /// }); /// /// itertools::assert_equal(fibonacci.by_ref().take(8), /// vec![1, 1, 2, 3, 5, 8, 13, 21]); /// assert_eq!(fibonacci.last(), Some(2_971_215_073)) /// ``` pub fn unfold(initial_state: St, f: F) -> Unfold where F: FnMut(&mut St) -> Option { Unfold { f, state: initial_state, } } impl fmt::Debug for Unfold where St: fmt::Debug, { debug_fmt_fields!(Unfold, state); } /// See [`unfold`](crate::unfold) for more information. #[derive(Clone)] #[must_use = "iterators are lazy and do nothing unless consumed"] pub struct Unfold { f: F, /// Internal state that will be passed to the closure on the next iteration pub state: St, } impl Iterator for Unfold where F: FnMut(&mut St) -> Option { type Item = A; #[inline] fn next(&mut self) -> Option { (self.f)(&mut self.state) } } /// An iterator that infinitely applies function to value and yields results. /// /// This `struct` is created by the [`iterate()`](crate::iterate) function. /// See its documentation for more. #[derive(Clone)] #[must_use = "iterators are lazy and do nothing unless consumed"] pub struct Iterate { state: St, f: F, } impl fmt::Debug for Iterate where St: fmt::Debug, { debug_fmt_fields!(Iterate, state); } impl Iterator for Iterate where F: FnMut(&St) -> St { type Item = St; #[inline] fn next(&mut self) -> Option { let next_state = (self.f)(&self.state); Some(mem::replace(&mut self.state, next_state)) } #[inline] fn size_hint(&self) -> (usize, Option) { (usize::max_value(), None) } } /// Creates a new iterator that infinitely applies function to value and yields results. /// /// ``` /// use itertools::iterate; /// /// itertools::assert_equal(iterate(1, |&i| i * 3).take(5), vec![1, 3, 9, 27, 81]); /// ``` pub fn iterate(initial_value: St, f: F) -> Iterate where F: FnMut(&St) -> St { Iterate { state: initial_value, f, } }