//! Utilities for Rust numbers. #![doc(hidden)] #[cfg(all(not(feature = "std"), feature = "compact"))] use crate::libm::{powd, powf}; #[cfg(not(feature = "compact"))] use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5}; #[cfg(not(feature = "compact"))] use core::hint; use core::ops; /// Generic floating-point type, to be used in generic code for parsing. /// /// Although the trait is part of the public API, the trait provides methods /// and constants that are effectively non-public: they may be removed /// at any time without any breaking changes. pub trait Float: Sized + Copy + PartialEq + PartialOrd + Send + Sync + ops::Add + ops::AddAssign + ops::Div + ops::DivAssign + ops::Mul + ops::MulAssign + ops::Rem + ops::RemAssign + ops::Sub + ops::SubAssign + ops::Neg { /// Maximum number of digits that can contribute in the mantissa. /// /// We can exactly represent a float in radix `b` from radix 2 if /// `b` is divisible by 2. This function calculates the exact number of /// digits required to exactly represent that float. /// /// According to the "Handbook of Floating Point Arithmetic", /// for IEEE754, with emin being the min exponent, p2 being the /// precision, and b being the radix, the number of digits follows as: /// /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋` /// /// For f32, this follows as: /// emin = -126 /// p2 = 24 /// /// For f64, this follows as: /// emin = -1022 /// p2 = 53 /// /// In Python: /// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))` /// /// This was used to calculate the maximum number of digits for [2, 36]. const MAX_DIGITS: usize; // MASKS /// Bitmask for the sign bit. const SIGN_MASK: u64; /// Bitmask for the exponent, including the hidden bit. const EXPONENT_MASK: u64; /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction. const HIDDEN_BIT_MASK: u64; /// Bitmask for the mantissa (fraction), excluding the hidden bit. const MANTISSA_MASK: u64; // PROPERTIES /// Size of the significand (mantissa) without hidden bit. const MANTISSA_SIZE: i32; /// Bias of the exponet const EXPONENT_BIAS: i32; /// Exponent portion of a denormal float. const DENORMAL_EXPONENT: i32; /// Maximum exponent value in float. const MAX_EXPONENT: i32; // ROUNDING /// Mask to determine if a full-carry occurred (1 in bit above hidden bit). const CARRY_MASK: u64; /// Bias for marking an invalid extended float. // Value is `i16::MIN`, using hard-coded constants for older Rustc versions. const INVALID_FP: i32 = -0x8000; // Maximum mantissa for the fast-path (`1 << 53` for f64). const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE; // Largest exponent value `(1 << EXP_BITS) - 1`. const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS; // Round-to-even only happens for negative values of q // when q ≥ −4 in the 64-bit case and when q ≥ −17 in // the 32-bitcase. // // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10. // // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64 // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case) // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64 // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11 // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase). // // Thus we have that we only need to round ties to even when // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10] // (in the 32-bit case). In both cases,the power of five(5^|q|) // fits in a 64-bit word. const MIN_EXPONENT_ROUND_TO_EVEN: i32; const MAX_EXPONENT_ROUND_TO_EVEN: i32; /// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`. const MINIMUM_EXPONENT: i32; /// Smallest decimal exponent for a non-zero value. const SMALLEST_POWER_OF_TEN: i32; /// Largest decimal exponent for a non-infinite value. const LARGEST_POWER_OF_TEN: i32; /// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋` const MIN_EXPONENT_FAST_PATH: i32; /// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋` const MAX_EXPONENT_FAST_PATH: i32; /// Maximum exponent that can be represented for a disguised-fast path case. /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋` const MAX_EXPONENT_DISGUISED_FAST_PATH: i32; /// Convert 64-bit integer to float. fn from_u64(u: u64) -> Self; // Re-exported methods from std. fn from_bits(u: u64) -> Self; fn to_bits(self) -> u64; /// Get a small power-of-radix for fast-path multiplication. /// /// # Safety /// /// Safe as long as the exponent is smaller than the table size. unsafe fn pow_fast_path(exponent: usize) -> Self; /// Get a small, integral power-of-radix for fast-path multiplication. /// /// # Safety /// /// Safe as long as the exponent is smaller than the table size. #[inline(always)] unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 { // SAFETY: safe as long as the exponent is smaller than the radix table. #[cfg(not(feature = "compact"))] return match radix { 5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) }, 10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) }, _ => unsafe { hint::unreachable_unchecked() }, }; #[cfg(feature = "compact")] return (radix as u64).pow(exponent as u32); } /// Returns true if the float is a denormal. #[inline] fn is_denormal(self) -> bool { self.to_bits() & Self::EXPONENT_MASK == 0 } /// Get exponent component from the float. #[inline] fn exponent(self) -> i32 { if self.is_denormal() { return Self::DENORMAL_EXPONENT; } let bits = self.to_bits(); let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32; biased_e - Self::EXPONENT_BIAS } /// Get mantissa (significand) component from float. #[inline] fn mantissa(self) -> u64 { let bits = self.to_bits(); let s = bits & Self::MANTISSA_MASK; if !self.is_denormal() { s + Self::HIDDEN_BIT_MASK } else { s } } } impl Float for f32 { const MAX_DIGITS: usize = 114; const SIGN_MASK: u64 = 0x80000000; const EXPONENT_MASK: u64 = 0x7F800000; const HIDDEN_BIT_MASK: u64 = 0x00800000; const MANTISSA_MASK: u64 = 0x007FFFFF; const MANTISSA_SIZE: i32 = 23; const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE; const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS; const CARRY_MASK: u64 = 0x1000000; const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17; const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10; const MINIMUM_EXPONENT: i32 = -127; const SMALLEST_POWER_OF_TEN: i32 = -65; const LARGEST_POWER_OF_TEN: i32 = 38; const MIN_EXPONENT_FAST_PATH: i32 = -10; const MAX_EXPONENT_FAST_PATH: i32 = 10; const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17; #[inline(always)] unsafe fn pow_fast_path(exponent: usize) -> Self { // SAFETY: safe as long as the exponent is smaller than the radix table. #[cfg(not(feature = "compact"))] return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) }; #[cfg(feature = "compact")] return powf(10.0f32, exponent as f32); } #[inline] fn from_u64(u: u64) -> f32 { u as _ } #[inline] fn from_bits(u: u64) -> f32 { // Constant is `u32::MAX` for older Rustc versions. debug_assert!(u <= 0xffff_ffff); f32::from_bits(u as u32) } #[inline] fn to_bits(self) -> u64 { f32::to_bits(self) as u64 } } impl Float for f64 { const MAX_DIGITS: usize = 769; const SIGN_MASK: u64 = 0x8000000000000000; const EXPONENT_MASK: u64 = 0x7FF0000000000000; const HIDDEN_BIT_MASK: u64 = 0x0010000000000000; const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF; const MANTISSA_SIZE: i32 = 52; const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE; const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS; const CARRY_MASK: u64 = 0x20000000000000; const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4; const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23; const MINIMUM_EXPONENT: i32 = -1023; const SMALLEST_POWER_OF_TEN: i32 = -342; const LARGEST_POWER_OF_TEN: i32 = 308; const MIN_EXPONENT_FAST_PATH: i32 = -22; const MAX_EXPONENT_FAST_PATH: i32 = 22; const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37; #[inline(always)] unsafe fn pow_fast_path(exponent: usize) -> Self { // SAFETY: safe as long as the exponent is smaller than the radix table. #[cfg(not(feature = "compact"))] return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) }; #[cfg(feature = "compact")] return powd(10.0f64, exponent as f64); } #[inline] fn from_u64(u: u64) -> f64 { u as _ } #[inline] fn from_bits(u: u64) -> f64 { f64::from_bits(u) } #[inline] fn to_bits(self) -> u64 { f64::to_bits(self) } } #[inline(always)] #[cfg(all(feature = "std", feature = "compact"))] pub fn powf(x: f32, y: f32) -> f32 { x.powf(y) } #[inline(always)] #[cfg(all(feature = "std", feature = "compact"))] pub fn powd(x: f64, y: f64) -> f64 { x.powf(y) }