//! Slow, fallback cases where we cannot unambiguously round a float. //! //! This occurs when we cannot determine the exact representation using //! both the fast path (native) cases nor the Lemire/Bellerophon algorithms, //! and therefore must fallback to a slow, arbitrary-precision representation. #![doc(hidden)] use crate::bigint::{Bigint, Limb, LIMB_BITS}; use crate::extended_float::{extended_to_float, ExtendedFloat}; use crate::num::Float; use crate::number::Number; use crate::rounding::{round, round_down, round_nearest_tie_even}; use core::cmp; // ALGORITHM // --------- /// Parse the significant digits and biased, binary exponent of a float. /// /// This is a fallback algorithm that uses a big-integer representation /// of the float, and therefore is considerably slower than faster /// approximations. However, it will always determine how to round /// the significant digits to the nearest machine float, allowing /// use to handle near half-way cases. /// /// Near half-way cases are halfway between two consecutive machine floats. /// For example, the float `16777217.0` has a bitwise representation of /// `100000000000000000000000 1`. Rounding to a single-precision float, /// the trailing `1` is truncated. Using round-nearest, tie-even, any /// value above `16777217.0` must be rounded up to `16777218.0`, while /// any value before or equal to `16777217.0` must be rounded down /// to `16777216.0`. These near-halfway conversions therefore may require /// a large number of digits to unambiguously determine how to round. #[inline] pub fn slow<'a, F, Iter1, Iter2>( num: Number, fp: ExtendedFloat, integer: Iter1, fraction: Iter2, ) -> ExtendedFloat where F: Float, Iter1: Iterator + Clone, Iter2: Iterator + Clone, { // Ensure our preconditions are valid: // 1. The significant digits are not shifted into place. debug_assert!(fp.mant & (1 << 63) != 0); // This assumes the sign bit has already been parsed, and we're // starting with the integer digits, and the float format has been // correctly validated. let sci_exp = scientific_exponent(&num); // We have 2 major algorithms we use for this: // 1. An algorithm with a finite number of digits and a positive exponent. // 2. An algorithm with a finite number of digits and a negative exponent. let (bigmant, digits) = parse_mantissa(integer, fraction, F::MAX_DIGITS); let exponent = sci_exp + 1 - digits as i32; if exponent >= 0 { positive_digit_comp::(bigmant, exponent) } else { negative_digit_comp::(bigmant, fp, exponent) } } /// Generate the significant digits with a positive exponent relative to mantissa. pub fn positive_digit_comp(mut bigmant: Bigint, exponent: i32) -> ExtendedFloat { // Simple, we just need to multiply by the power of the radix. // Now, we can calculate the mantissa and the exponent from this. // The binary exponent is the binary exponent for the mantissa // shifted to the hidden bit. bigmant.pow(10, exponent as u32).unwrap(); // Get the exact representation of the float from the big integer. // hi64 checks **all** the remaining bits after the mantissa, // so it will check if **any** truncated digits exist. let (mant, is_truncated) = bigmant.hi64(); let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS; let mut fp = ExtendedFloat { mant, exp, }; // Shift the digits into position and determine if we need to round-up. round::(&mut fp, |f, s| { round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| { is_above || (is_halfway && is_truncated) || (is_odd && is_halfway) }); }); fp } /// Generate the significant digits with a negative exponent relative to mantissa. /// /// This algorithm is quite simple: we have the significant digits `m1 * b^N1`, /// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix /// exponent. We then calculate the theoretical representation of `b+h`, which /// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary /// exponent. If we had infinite, efficient floating precision, this would be /// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`. /// /// Since we cannot divide and keep precision, we must multiply the other: /// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do /// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example /// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove /// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if /// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise, /// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents /// are all positive. /// /// This allows us to compare both floats using integers efficiently /// without any loss of precision. #[allow(clippy::comparison_chain)] pub fn negative_digit_comp( bigmant: Bigint, mut fp: ExtendedFloat, exponent: i32, ) -> ExtendedFloat { // Ensure our preconditions are valid: // 1. The significant digits are not shifted into place. debug_assert!(fp.mant & (1 << 63) != 0); // Get the significant digits and radix exponent for the real digits. let mut real_digits = bigmant; let real_exp = exponent; debug_assert!(real_exp < 0); // Round down our extended-precision float and calculate `b`. let mut b = fp; round::(&mut b, round_down); let b = extended_to_float::(b); // Get the significant digits and the binary exponent for `b+h`. let theor = bh(b); let mut theor_digits = Bigint::from_u64(theor.mant); let theor_exp = theor.exp; // We need to scale the real digits and `b+h` digits to be the same // order. We currently have `real_exp`, in `radix`, that needs to be // shifted to `theor_digits` (since it is negative), and `theor_exp` // to either `theor_digits` or `real_digits` as a power of 2 (since it // may be positive or negative). Try to remove as many powers of 2 // as possible. All values are relative to `theor_digits`, that is, // reflect the power you need to multiply `theor_digits` by. // // Both are on opposite-sides of equation, can factor out a // power of two. // // Example: 10^-10, 2^-10 -> ( 0, 10, 0) // Example: 10^-10, 2^-15 -> (-5, 10, 0) // Example: 10^-10, 2^-5 -> ( 5, 10, 0) // Example: 10^-10, 2^5 -> (15, 10, 0) let binary_exp = theor_exp - real_exp; let halfradix_exp = -real_exp; if halfradix_exp != 0 { theor_digits.pow(5, halfradix_exp as u32).unwrap(); } if binary_exp > 0 { theor_digits.pow(2, binary_exp as u32).unwrap(); } else if binary_exp < 0 { real_digits.pow(2, (-binary_exp) as u32).unwrap(); } // Compare our theoretical and real digits and round nearest, tie even. let ord = real_digits.data.cmp(&theor_digits.data); round::(&mut fp, |f, s| { round_nearest_tie_even(f, s, |is_odd, _, _| { // Can ignore `is_halfway` and `is_above`, since those were // calculates using less significant digits. match ord { cmp::Ordering::Greater => true, cmp::Ordering::Less => false, cmp::Ordering::Equal if is_odd => true, cmp::Ordering::Equal => false, } }); }); fp } /// Add a digit to the temporary value. macro_rules! add_digit { ($c:ident, $value:ident, $counter:ident, $count:ident) => {{ let digit = $c - b'0'; $value *= 10 as Limb; $value += digit as Limb; // Increment our counters. $counter += 1; $count += 1; }}; } /// Add a temporary value to our mantissa. macro_rules! add_temporary { // Multiply by the small power and add the native value. (@mul $result:ident, $power:expr, $value:expr) => { $result.data.mul_small($power).unwrap(); $result.data.add_small($value).unwrap(); }; // # Safety // // Safe is `counter <= step`, or smaller than the table size. ($format:ident, $result:ident, $counter:ident, $value:ident) => { if $counter != 0 { // SAFETY: safe, since `counter <= step`, or smaller than the table size. let small_power = unsafe { f64::int_pow_fast_path($counter, 10) }; add_temporary!(@mul $result, small_power as Limb, $value); $counter = 0; $value = 0; } }; // Add a temporary where we won't read the counter results internally. // // # Safety // // Safe is `counter <= step`, or smaller than the table size. (@end $format:ident, $result:ident, $counter:ident, $value:ident) => { if $counter != 0 { // SAFETY: safe, since `counter <= step`, or smaller than the table size. let small_power = unsafe { f64::int_pow_fast_path($counter, 10) }; add_temporary!(@mul $result, small_power as Limb, $value); } }; // Add the maximum native value. (@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => { add_temporary!(@mul $result, $max, $value); $counter = 0; $value = 0; }; } /// Round-up a truncated value. macro_rules! round_up_truncated { ($format:ident, $result:ident, $count:ident) => {{ // Need to round-up. // Can't just add 1, since this can accidentally round-up // values to a halfway point, which can cause invalid results. add_temporary!(@mul $result, 10, 1); $count += 1; }}; } /// Check and round-up the fraction if any non-zero digits exist. macro_rules! round_up_nonzero { ($format:ident, $iter:expr, $result:ident, $count:ident) => {{ for &digit in $iter { if digit != b'0' { round_up_truncated!($format, $result, $count); return ($result, $count); } } }}; } /// Parse the full mantissa into a big integer. /// /// Returns the parsed mantissa and the number of digits in the mantissa. /// The max digits is the maximum number of digits plus one. pub fn parse_mantissa<'a, Iter1, Iter2>( mut integer: Iter1, mut fraction: Iter2, max_digits: usize, ) -> (Bigint, usize) where Iter1: Iterator + Clone, Iter2: Iterator + Clone, { // Iteratively process all the data in the mantissa. // We do this via small, intermediate values which once we reach // the maximum number of digits we can process without overflow, // we add the temporary to the big integer. let mut counter: usize = 0; let mut count: usize = 0; let mut value: Limb = 0; let mut result = Bigint::new(); // Now use our pre-computed small powers iteratively. // This is calculated as `⌊log(2^BITS - 1, 10)⌋`. let step: usize = if LIMB_BITS == 32 { 9 } else { 19 }; let max_native = (10 as Limb).pow(step as u32); // Process the integer digits. 'integer: loop { // Parse a digit at a time, until we reach step. while counter < step && count < max_digits { if let Some(&c) = integer.next() { add_digit!(c, value, counter, count); } else { break 'integer; } } // Check if we've exhausted our max digits. if count == max_digits { // Need to check if we're truncated, and round-up accordingly. // SAFETY: safe since `counter <= step`. add_temporary!(@end format, result, counter, value); round_up_nonzero!(format, integer, result, count); round_up_nonzero!(format, fraction, result, count); return (result, count); } else { // Add our temporary from the loop. // SAFETY: safe since `counter <= step`. add_temporary!(@max format, result, counter, value, max_native); } } // Skip leading fraction zeros. // Required to get an accurate count. if count == 0 { for &c in &mut fraction { if c != b'0' { add_digit!(c, value, counter, count); break; } } } // Process the fraction digits. 'fraction: loop { // Parse a digit at a time, until we reach step. while counter < step && count < max_digits { if let Some(&c) = fraction.next() { add_digit!(c, value, counter, count); } else { break 'fraction; } } // Check if we've exhausted our max digits. if count == max_digits { // SAFETY: safe since `counter <= step`. add_temporary!(@end format, result, counter, value); round_up_nonzero!(format, fraction, result, count); return (result, count); } else { // Add our temporary from the loop. // SAFETY: safe since `counter <= step`. add_temporary!(@max format, result, counter, value, max_native); } } // We will always have a remainder, as long as we entered the loop // once, or counter % step is 0. // SAFETY: safe since `counter <= step`. add_temporary!(@end format, result, counter, value); (result, count) } // SCALING // ------- /// Calculate the scientific exponent from a `Number` value. /// Any other attempts would require slowdowns for faster algorithms. #[inline] pub fn scientific_exponent(num: &Number) -> i32 { // Use power reduction to make this faster. let mut mantissa = num.mantissa; let mut exponent = num.exponent; while mantissa >= 10000 { mantissa /= 10000; exponent += 4; } while mantissa >= 100 { mantissa /= 100; exponent += 2; } while mantissa >= 10 { mantissa /= 10; exponent += 1; } exponent as i32 } /// Calculate `b` from a a representation of `b` as a float. #[inline] pub fn b(float: F) -> ExtendedFloat { ExtendedFloat { mant: float.mantissa(), exp: float.exponent(), } } /// Calculate `b+h` from a a representation of `b` as a float. #[inline] pub fn bh(float: F) -> ExtendedFloat { let fp = b(float); ExtendedFloat { mant: (fp.mant << 1) + 1, exp: fp.exp - 1, } }