use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr}; use bounds::Bounded; use ops::checked::*; use ops::saturating::Saturating; use {Num, NumCast}; /// Generic trait for primitive integers. /// /// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`, /// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with /// bitwise operators and non-wrapping arithmetic. /// /// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all /// types implementing this trait behave like primitive types that are passed by value by default /// and behave like builtin integers. Furthermore, the types are expected to expose the integer /// value in binary representation and support bitwise operators. The standard bitwise operations /// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends /// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`), /// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g., /// `PrimInt::to_be()`). /// /// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried /// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at /// compile-time. /// /// While a default implementation for all builtin primitive integers is provided, the trait is in /// no way restricted to these. Other integer types that fulfil the requirements are free to /// implement the trait was well. /// /// This trait and many of the method names originate in the unstable `core::num::Int` trait from /// the rust standard library. The original trait was never stabilized and thus removed from the /// standard library. pub trait PrimInt: Sized + Copy + Num + NumCast + Bounded + PartialOrd + Ord + Eq + Not + BitAnd + BitOr + BitXor + Shl + Shr + CheckedAdd + CheckedSub + CheckedMul + CheckedDiv + Saturating { /// Returns the number of ones in the binary representation of `self`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0b01001100u8; /// /// assert_eq!(n.count_ones(), 3); /// ``` fn count_ones(self) -> u32; /// Returns the number of zeros in the binary representation of `self`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0b01001100u8; /// /// assert_eq!(n.count_zeros(), 5); /// ``` fn count_zeros(self) -> u32; /// Returns the number of leading ones in the binary representation /// of `self`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0xF00Du16; /// /// assert_eq!(n.leading_ones(), 4); /// ``` fn leading_ones(self) -> u32 { (!self).leading_zeros() } /// Returns the number of leading zeros in the binary representation /// of `self`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0b0101000u16; /// /// assert_eq!(n.leading_zeros(), 10); /// ``` fn leading_zeros(self) -> u32; /// Returns the number of trailing ones in the binary representation /// of `self`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0xBEEFu16; /// /// assert_eq!(n.trailing_ones(), 4); /// ``` fn trailing_ones(self) -> u32 { (!self).trailing_zeros() } /// Returns the number of trailing zeros in the binary representation /// of `self`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0b0101000u16; /// /// assert_eq!(n.trailing_zeros(), 3); /// ``` fn trailing_zeros(self) -> u32; /// Shifts the bits to the left by a specified amount, `n`, wrapping /// the truncated bits to the end of the resulting integer. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0x3456789ABCDEF012u64; /// /// assert_eq!(n.rotate_left(12), m); /// ``` fn rotate_left(self, n: u32) -> Self; /// Shifts the bits to the right by a specified amount, `n`, wrapping /// the truncated bits to the beginning of the resulting integer. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0xDEF0123456789ABCu64; /// /// assert_eq!(n.rotate_right(12), m); /// ``` fn rotate_right(self, n: u32) -> Self; /// Shifts the bits to the left by a specified amount, `n`, filling /// zeros in the least significant bits. /// /// This is bitwise equivalent to signed `Shl`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0x3456789ABCDEF000u64; /// /// assert_eq!(n.signed_shl(12), m); /// ``` fn signed_shl(self, n: u32) -> Self; /// Shifts the bits to the right by a specified amount, `n`, copying /// the "sign bit" in the most significant bits even for unsigned types. /// /// This is bitwise equivalent to signed `Shr`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0xFEDCBA9876543210u64; /// let m = 0xFFFFEDCBA9876543u64; /// /// assert_eq!(n.signed_shr(12), m); /// ``` fn signed_shr(self, n: u32) -> Self; /// Shifts the bits to the left by a specified amount, `n`, filling /// zeros in the least significant bits. /// /// This is bitwise equivalent to unsigned `Shl`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFi64; /// let m = 0x3456789ABCDEF000i64; /// /// assert_eq!(n.unsigned_shl(12), m); /// ``` fn unsigned_shl(self, n: u32) -> Self; /// Shifts the bits to the right by a specified amount, `n`, filling /// zeros in the most significant bits. /// /// This is bitwise equivalent to unsigned `Shr`. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = -8i8; // 0b11111000 /// let m = 62i8; // 0b00111110 /// /// assert_eq!(n.unsigned_shr(2), m); /// ``` fn unsigned_shr(self, n: u32) -> Self; /// Reverses the byte order of the integer. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// let m = 0xEFCDAB8967452301u64; /// /// assert_eq!(n.swap_bytes(), m); /// ``` fn swap_bytes(self) -> Self; /// Reverses the order of bits in the integer. /// /// The least significant bit becomes the most significant bit, second least-significant bit /// becomes second most-significant bit, etc. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x12345678u32; /// let m = 0x1e6a2c48u32; /// /// assert_eq!(n.reverse_bits(), m); /// assert_eq!(0u32.reverse_bits(), 0); /// ``` fn reverse_bits(self) -> Self { reverse_bits_fallback(self) } /// Convert an integer from big endian to the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(u64::from_be(n), n) /// } else { /// assert_eq!(u64::from_be(n), n.swap_bytes()) /// } /// ``` fn from_be(x: Self) -> Self; /// Convert an integer from little endian to the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(u64::from_le(n), n) /// } else { /// assert_eq!(u64::from_le(n), n.swap_bytes()) /// } /// ``` fn from_le(x: Self) -> Self; /// Convert `self` to big endian from the target's endianness. /// /// On big endian this is a no-op. On little endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "big") { /// assert_eq!(n.to_be(), n) /// } else { /// assert_eq!(n.to_be(), n.swap_bytes()) /// } /// ``` fn to_be(self) -> Self; /// Convert `self` to little endian from the target's endianness. /// /// On little endian this is a no-op. On big endian the bytes are swapped. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// let n = 0x0123456789ABCDEFu64; /// /// if cfg!(target_endian = "little") { /// assert_eq!(n.to_le(), n) /// } else { /// assert_eq!(n.to_le(), n.swap_bytes()) /// } /// ``` fn to_le(self) -> Self; /// Raises self to the power of `exp`, using exponentiation by squaring. /// /// # Examples /// /// ``` /// use num_traits::PrimInt; /// /// assert_eq!(2i32.pow(4), 16); /// ``` fn pow(self, exp: u32) -> Self; } fn one_per_byte() -> P { // i8, u8: return 0x01 // i16, u16: return 0x0101 = (0x01 << 8) | 0x01 // i32, u32: return 0x01010101 = (0x0101 << 16) | 0x0101 // ... let mut ret = P::one(); let mut shift = 8; let mut b = ret.count_zeros() >> 3; while b != 0 { ret = (ret << shift) | ret; shift <<= 1; b >>= 1; } ret } fn reverse_bits_fallback(i: P) -> P { let rep_01: P = one_per_byte(); let rep_03 = (rep_01 << 1) | rep_01; let rep_05 = (rep_01 << 2) | rep_01; let rep_0f = (rep_03 << 2) | rep_03; let rep_33 = (rep_03 << 4) | rep_03; let rep_55 = (rep_05 << 4) | rep_05; // code above only used to determine rep_0f, rep_33, rep_55; // optimizer should be able to do it in compile time let mut ret = i.swap_bytes(); ret = ((ret & rep_0f) << 4) | ((ret >> 4) & rep_0f); ret = ((ret & rep_33) << 2) | ((ret >> 2) & rep_33); ret = ((ret & rep_55) << 1) | ((ret >> 1) & rep_55); ret } macro_rules! prim_int_impl { ($T:ty, $S:ty, $U:ty) => { impl PrimInt for $T { #[inline] fn count_ones(self) -> u32 { <$T>::count_ones(self) } #[inline] fn count_zeros(self) -> u32 { <$T>::count_zeros(self) } #[cfg(has_leading_trailing_ones)] #[inline] fn leading_ones(self) -> u32 { <$T>::leading_ones(self) } #[inline] fn leading_zeros(self) -> u32 { <$T>::leading_zeros(self) } #[cfg(has_leading_trailing_ones)] #[inline] fn trailing_ones(self) -> u32 { <$T>::trailing_ones(self) } #[inline] fn trailing_zeros(self) -> u32 { <$T>::trailing_zeros(self) } #[inline] fn rotate_left(self, n: u32) -> Self { <$T>::rotate_left(self, n) } #[inline] fn rotate_right(self, n: u32) -> Self { <$T>::rotate_right(self, n) } #[inline] fn signed_shl(self, n: u32) -> Self { ((self as $S) << n) as $T } #[inline] fn signed_shr(self, n: u32) -> Self { ((self as $S) >> n) as $T } #[inline] fn unsigned_shl(self, n: u32) -> Self { ((self as $U) << n) as $T } #[inline] fn unsigned_shr(self, n: u32) -> Self { ((self as $U) >> n) as $T } #[inline] fn swap_bytes(self) -> Self { <$T>::swap_bytes(self) } #[cfg(has_reverse_bits)] #[inline] fn reverse_bits(self) -> Self { <$T>::reverse_bits(self) } #[inline] fn from_be(x: Self) -> Self { <$T>::from_be(x) } #[inline] fn from_le(x: Self) -> Self { <$T>::from_le(x) } #[inline] fn to_be(self) -> Self { <$T>::to_be(self) } #[inline] fn to_le(self) -> Self { <$T>::to_le(self) } #[inline] fn pow(self, exp: u32) -> Self { <$T>::pow(self, exp) } } }; } // prim_int_impl!(type, signed, unsigned); prim_int_impl!(u8, i8, u8); prim_int_impl!(u16, i16, u16); prim_int_impl!(u32, i32, u32); prim_int_impl!(u64, i64, u64); #[cfg(has_i128)] prim_int_impl!(u128, i128, u128); prim_int_impl!(usize, isize, usize); prim_int_impl!(i8, i8, u8); prim_int_impl!(i16, i16, u16); prim_int_impl!(i32, i32, u32); prim_int_impl!(i64, i64, u64); #[cfg(has_i128)] prim_int_impl!(i128, i128, u128); prim_int_impl!(isize, isize, usize); #[cfg(test)] mod tests { use int::PrimInt; #[test] pub fn reverse_bits() { use core::{i16, i32, i64, i8}; assert_eq!( PrimInt::reverse_bits(0x0123_4567_89ab_cdefu64), 0xf7b3_d591_e6a2_c480 ); assert_eq!(PrimInt::reverse_bits(0i8), 0); assert_eq!(PrimInt::reverse_bits(-1i8), -1); assert_eq!(PrimInt::reverse_bits(1i8), i8::MIN); assert_eq!(PrimInt::reverse_bits(i8::MIN), 1); assert_eq!(PrimInt::reverse_bits(-2i8), i8::MAX); assert_eq!(PrimInt::reverse_bits(i8::MAX), -2); assert_eq!(PrimInt::reverse_bits(0i16), 0); assert_eq!(PrimInt::reverse_bits(-1i16), -1); assert_eq!(PrimInt::reverse_bits(1i16), i16::MIN); assert_eq!(PrimInt::reverse_bits(i16::MIN), 1); assert_eq!(PrimInt::reverse_bits(-2i16), i16::MAX); assert_eq!(PrimInt::reverse_bits(i16::MAX), -2); assert_eq!(PrimInt::reverse_bits(0i32), 0); assert_eq!(PrimInt::reverse_bits(-1i32), -1); assert_eq!(PrimInt::reverse_bits(1i32), i32::MIN); assert_eq!(PrimInt::reverse_bits(i32::MIN), 1); assert_eq!(PrimInt::reverse_bits(-2i32), i32::MAX); assert_eq!(PrimInt::reverse_bits(i32::MAX), -2); assert_eq!(PrimInt::reverse_bits(0i64), 0); assert_eq!(PrimInt::reverse_bits(-1i64), -1); assert_eq!(PrimInt::reverse_bits(1i64), i64::MIN); assert_eq!(PrimInt::reverse_bits(i64::MIN), 1); assert_eq!(PrimInt::reverse_bits(-2i64), i64::MAX); assert_eq!(PrimInt::reverse_bits(i64::MAX), -2); } #[test] #[cfg(has_i128)] pub fn reverse_bits_i128() { use core::i128; assert_eq!(PrimInt::reverse_bits(0i128), 0); assert_eq!(PrimInt::reverse_bits(-1i128), -1); assert_eq!(PrimInt::reverse_bits(1i128), i128::MIN); assert_eq!(PrimInt::reverse_bits(i128::MIN), 1); assert_eq!(PrimInt::reverse_bits(-2i128), i128::MAX); assert_eq!(PrimInt::reverse_bits(i128::MAX), -2); } }