//! Parallel iterator types for [inclusive ranges][std::range], //! the type for values created by `a..=b` expressions //! //! You will rarely need to interact with this module directly unless you have //! need to name one of the iterator types. //! //! ``` //! use rayon::prelude::*; //! //! let r = (0..=100u64).into_par_iter() //! .sum(); //! //! // compare result with sequential calculation //! assert_eq!((0..=100).sum::(), r); //! ``` //! //! [std::range]: https://doc.rust-lang.org/core/ops/struct.RangeInclusive.html use crate::iter::plumbing::*; use crate::iter::*; use std::char; use std::ops::RangeInclusive; /// Parallel iterator over an inclusive range, implemented for all integer types and `char`. /// /// **Note:** The `zip` operation requires `IndexedParallelIterator` /// which is only implemented for `u8`, `i8`, `u16`, `i16`, and `char`. /// /// ``` /// use rayon::prelude::*; /// /// let p = (0..=25u16).into_par_iter() /// .zip(0..=25u16) /// .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0) /// .map(|(x, y)| x * y) /// .sum::(); /// /// let s = (0..=25u16).zip(0..=25u16) /// .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0) /// .map(|(x, y)| x * y) /// .sum(); /// /// assert_eq!(p, s); /// ``` #[derive(Debug, Clone)] pub struct Iter { range: RangeInclusive, } impl Iter where RangeInclusive: Eq, T: Ord + Copy, { /// Returns `Some((start, end))` for `start..=end`, or `None` if it is exhausted. /// /// Note that `RangeInclusive` does not specify the bounds of an exhausted iterator, /// so this is a way for us to figure out what we've got. Thankfully, all of the /// integer types we care about can be trivially cloned. fn bounds(&self) -> Option<(T, T)> { let start = *self.range.start(); let end = *self.range.end(); if start <= end && self.range == (start..=end) { // If the range is still nonempty, this is obviously true // If the range is exhausted, either start > end or // the range does not equal start..=end. Some((start, end)) } else { None } } } /// Implemented for ranges of all primitive integer types and `char`. impl IntoParallelIterator for RangeInclusive where Iter: ParallelIterator, { type Item = as ParallelIterator>::Item; type Iter = Iter; fn into_par_iter(self) -> Self::Iter { Iter { range: self } } } /// These traits help drive integer type inference. Without them, an unknown `{integer}` type only /// has constraints on `Iter<{integer}>`, which will probably give up and use `i32`. By adding /// these traits on the item type, the compiler can see a more direct constraint to infer like /// `{integer}: RangeInteger`, which works better. See `test_issue_833` for an example. /// /// They have to be `pub` since they're seen in the public `impl ParallelIterator` constraints, but /// we put them in a private modules so they're not actually reachable in our public API. mod private { use super::*; /// Implementation details of `ParallelIterator for Iter` pub trait RangeInteger: Sized + Send { private_decl! {} fn drive_unindexed(iter: Iter, consumer: C) -> C::Result where C: UnindexedConsumer; fn opt_len(iter: &Iter) -> Option; } /// Implementation details of `IndexedParallelIterator for Iter` pub trait IndexedRangeInteger: RangeInteger { private_decl! {} fn drive(iter: Iter, consumer: C) -> C::Result where C: Consumer; fn len(iter: &Iter) -> usize; fn with_producer(iter: Iter, callback: CB) -> CB::Output where CB: ProducerCallback; } } use private::{IndexedRangeInteger, RangeInteger}; impl ParallelIterator for Iter { type Item = T; fn drive_unindexed(self, consumer: C) -> C::Result where C: UnindexedConsumer, { T::drive_unindexed(self, consumer) } #[inline] fn opt_len(&self) -> Option { T::opt_len(self) } } impl IndexedParallelIterator for Iter { fn drive(self, consumer: C) -> C::Result where C: Consumer, { T::drive(self, consumer) } #[inline] fn len(&self) -> usize { T::len(self) } fn with_producer(self, callback: CB) -> CB::Output where CB: ProducerCallback, { T::with_producer(self, callback) } } macro_rules! convert { ( $iter:ident . $method:ident ( $( $arg:expr ),* ) ) => { if let Some((start, end)) = $iter.bounds() { if let Some(end) = end.checked_add(1) { (start..end).into_par_iter().$method($( $arg ),*) } else { (start..end).into_par_iter().chain(once(end)).$method($( $arg ),*) } } else { empty::().$method($( $arg ),*) } }; } macro_rules! parallel_range_impl { ( $t:ty ) => { impl RangeInteger for $t { private_impl! {} fn drive_unindexed(iter: Iter<$t>, consumer: C) -> C::Result where C: UnindexedConsumer<$t>, { convert!(iter.drive_unindexed(consumer)) } fn opt_len(iter: &Iter<$t>) -> Option { convert!(iter.opt_len()) } } }; } macro_rules! indexed_range_impl { ( $t:ty ) => { parallel_range_impl! { $t } impl IndexedRangeInteger for $t { private_impl! {} fn drive(iter: Iter<$t>, consumer: C) -> C::Result where C: Consumer<$t>, { convert!(iter.drive(consumer)) } fn len(iter: &Iter<$t>) -> usize { iter.range.len() } fn with_producer(iter: Iter<$t>, callback: CB) -> CB::Output where CB: ProducerCallback<$t>, { convert!(iter.with_producer(callback)) } } }; } // all RangeInclusive with ExactSizeIterator indexed_range_impl! {u8} indexed_range_impl! {u16} indexed_range_impl! {i8} indexed_range_impl! {i16} // other RangeInclusive with just Iterator parallel_range_impl! {usize} parallel_range_impl! {isize} parallel_range_impl! {u32} parallel_range_impl! {i32} parallel_range_impl! {u64} parallel_range_impl! {i64} parallel_range_impl! {u128} parallel_range_impl! {i128} // char is special macro_rules! convert_char { ( $self:ident . $method:ident ( $( $arg:expr ),* ) ) => { if let Some((start, end)) = $self.bounds() { let start = start as u32; let end = end as u32; if start < 0xD800 && 0xE000 <= end { // chain the before and after surrogate range fragments (start..0xD800) .into_par_iter() .chain(0xE000..end + 1) // cannot use RangeInclusive, so add one to end .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) }) .$method($( $arg ),*) } else { // no surrogate range to worry about (start..end + 1) // cannot use RangeInclusive, so add one to end .into_par_iter() .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) }) .$method($( $arg ),*) } } else { empty::().$method($( $arg ),*) } }; } impl ParallelIterator for Iter { type Item = char; fn drive_unindexed(self, consumer: C) -> C::Result where C: UnindexedConsumer, { convert_char!(self.drive(consumer)) } fn opt_len(&self) -> Option { Some(self.len()) } } // Range is broken on 16 bit platforms, may as well benefit from it impl IndexedParallelIterator for Iter { // Split at the surrogate range first if we're allowed to fn drive(self, consumer: C) -> C::Result where C: Consumer, { convert_char!(self.drive(consumer)) } fn len(&self) -> usize { if let Some((start, end)) = self.bounds() { // Taken from ::steps_between let start = start as u32; let end = end as u32; let mut count = end - start; if start < 0xD800 && 0xE000 <= end { count -= 0x800 } (count + 1) as usize // add one for inclusive } else { 0 } } fn with_producer(self, callback: CB) -> CB::Output where CB: ProducerCallback, { convert_char!(self.with_producer(callback)) } } #[test] #[cfg(target_pointer_width = "64")] fn test_u32_opt_len() { use std::u32; assert_eq!(Some(101), (0..=100u32).into_par_iter().opt_len()); assert_eq!( Some(u32::MAX as usize), (0..=u32::MAX - 1).into_par_iter().opt_len() ); assert_eq!( Some(u32::MAX as usize + 1), (0..=u32::MAX).into_par_iter().opt_len() ); } #[test] fn test_u64_opt_len() { use std::{u64, usize}; assert_eq!(Some(101), (0..=100u64).into_par_iter().opt_len()); assert_eq!( Some(usize::MAX), (0..=usize::MAX as u64 - 1).into_par_iter().opt_len() ); assert_eq!(None, (0..=usize::MAX as u64).into_par_iter().opt_len()); assert_eq!(None, (0..=u64::MAX).into_par_iter().opt_len()); } #[test] fn test_u128_opt_len() { use std::{u128, usize}; assert_eq!(Some(101), (0..=100u128).into_par_iter().opt_len()); assert_eq!( Some(usize::MAX), (0..=usize::MAX as u128 - 1).into_par_iter().opt_len() ); assert_eq!(None, (0..=usize::MAX as u128).into_par_iter().opt_len()); assert_eq!(None, (0..=u128::MAX).into_par_iter().opt_len()); } // `usize as i64` can overflow, so make sure to wrap it appropriately // when using the `opt_len` "indexed" mode. #[test] #[cfg(target_pointer_width = "64")] fn test_usize_i64_overflow() { use crate::ThreadPoolBuilder; use std::i64; let iter = (-2..=i64::MAX).into_par_iter(); assert_eq!(iter.opt_len(), Some(i64::MAX as usize + 3)); // always run with multiple threads to split into, or this will take forever... let pool = ThreadPoolBuilder::new().num_threads(8).build().unwrap(); pool.install(|| assert_eq!(iter.find_last(|_| true), Some(i64::MAX))); } #[test] fn test_issue_833() { fn is_even(n: i64) -> bool { n % 2 == 0 } // The integer type should be inferred from `is_even` let v: Vec<_> = (1..=100).into_par_iter().filter(|&x| is_even(x)).collect(); assert!(v.into_iter().eq((2..=100).step_by(2))); // Try examples with indexed iterators too let pos = (0..=100).into_par_iter().position_any(|x| x == 50i16); assert_eq!(pos, Some(50usize)); assert!((0..=100) .into_par_iter() .zip(0..=100) .all(|(a, b)| i16::eq(&a, &b))); }