# Decimal   [![Build Status]][actions] [![Latest Version]][crates.io] [![Docs Badge]][docs] [Build Status]: https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fpaupino%2Frust-decimal%2Fbadge&label=build&logo=none [actions]: https://actions-badge.atrox.dev/paupino/rust-decimal/goto [Latest Version]: https://img.shields.io/crates/v/rust-decimal.svg [crates.io]: https://crates.io/crates/rust-decimal [Docs Badge]: https://docs.rs/rust_decimal/badge.svg [docs]: https://docs.rs/rust_decimal A Decimal number implementation written in pure Rust suitable for financial calculations that require significant integral and fractional digits with no round-off errors. The binary representation consists of a 96 bit integer number, a scaling factor used to specify the decimal fraction and a 1 bit sign. Because of this representation, trailing zeros are preserved and may be exposed when in string form. These can be truncated using the `normalize` or `round_dp` functions. ## Installing Using [`cargo-edit`](https://crates.io/crates/cargo-edit): ```sh $ cargo add rust_decimal ``` In addition, if you would like to use the optimized macro for convenient creation of decimals: ```sh $ cargo add rust_decimal_macros ``` Alternatively, you can edit your `Cargo.toml` directly and run `cargo update`: ```toml [dependencies] rust_decimal = "1.28" rust_decimal_macros = "1.28" ``` ## Usage Decimal numbers can be created in a few distinct ways. The easiest and most efficient method of creating a Decimal is to use the procedural macro within the `rust_decimal_macros` crate: ```rust // Procedural macros need importing directly use rust_decimal_macros::dec; let number = dec!(-1.23) + dec!(3.45); assert_eq!(number, dec!(2.22)); assert_eq!(number.to_string(), "2.22"); ``` Alternatively you can also use one of the Decimal number convenience functions ([see the docs](https://docs.rs/rust_decimal/) for more details): ```rust // Using the prelude can help importing trait based functions (e.g. core::str::FromStr). use rust_decimal::prelude::*; // Using an integer followed by the decimal points let scaled = Decimal::new(202, 2); assert_eq!("2.02", scaled.to_string()); // From a 128 bit integer let balance = Decimal::from_i128_with_scale(5_897_932_384_626_433_832, 2); assert_eq!("58979323846264338.32", balance.to_string()); // From a string representation let from_string = Decimal::from_str("2.02").unwrap(); assert_eq!("2.02", from_string.to_string()); // From a string representation in a different base let from_string_base16 = Decimal::from_str_radix("ffff", 16).unwrap(); assert_eq!("65535", from_string_base16.to_string()); // From scientific notation let sci = Decimal::from_scientific("9.7e-7").unwrap(); assert_eq!("0.00000097", sci.to_string()); // Using the `Into` trait let my_int: Decimal = 3_i32.into(); assert_eq!("3", my_int.to_string()); // Using the raw decimal representation let pi = Decimal::from_parts(1_102_470_952, 185_874_565, 1_703_060_790, false, 28); assert_eq!("3.1415926535897932384626433832", pi.to_string()); ``` Once you have instantiated your `Decimal` number you can perform calculations with it just like any other number: ```rust use rust_decimal::prelude::*; use rust_decimal_macros::dec; let amount = dec!(25.12); let tax_percentage = dec!(0.085); let total = amount + (amount * tax_percentage).round_dp(2); assert_eq!(total, dec!(27.26)); ``` ## Features **Behavior / Functionality** * [borsh](#borsh) * [c-repr](#c-repr) * [legacy-ops](#legacy-ops) * [maths](#maths) * [rkyv](#rkyv) * [rocket-traits](#rocket-traits) * [rust-fuzz](#rust-fuzz) * [std](#std) **Database** * [db-postgres](#db-postgres) * [db-tokio-postgres](#db-tokio-postgres) * [db-diesel-postgres](#db-diesel-postgres) * [db-diesel-mysql](#db-diesel-mysql) **Serde** * [serde-float](#serde-float) * [serde-str](#serde-str) * [serde-arbitrary-precision](#serde-arbitrary-precision) * [serde-with-float](#serde-with-float) * [serde-with-str](#serde-with-str) * [serde-with-arbitrary-precision](#serde-with-arbitrary-precision) ### `borsh` Enables [Borsh](https://borsh.io/) serialization for `Decimal`. ### `c-repr` Forces `Decimal` to use `[repr(C)]`. The corresponding target layout is 128 bit aligned. ### `db-postgres` Enables a PostgreSQL communication module. It allows for reading and writing the `Decimal` type by transparently serializing/deserializing into the `NUMERIC` data type within PostgreSQL. ### `db-tokio-postgres` Enables the tokio postgres module allowing for async communication with PostgreSQL. ### `db-diesel-postgres` Enable `diesel` PostgreSQL support. By default, this enables version `1.4` of `diesel`. If you wish to use the `2.0` version of `diesel` then you can do so by using the feature `db-diesel2-postgres`. Please note, if both features are enabled then version 2 will supersede version 1. ### `db-diesel-mysql` Enable `diesel` MySQL support. By default, this enables version `1.4` of `diesel`. If you wish to use the `2.0` version of `diesel` then you can do so by using the feature `db-diesel2-mysql`. Please note, if both features are enabled then version 2 will supersede version 1. ### `legacy-ops` **Warning:** This is deprecated and will be removed from a future versions. As of `1.10` the algorithms used to perform basic operations have changed which has benefits of significant speed improvements. To maintain backwards compatibility this can be opted out of by enabling the `legacy-ops` feature. ### `maths` The `maths` feature enables additional complex mathematical functions such as `pow`, `ln`, `enf`, `exp` etc. Documentation detailing the additional functions can be found on the [`MathematicalOps`](https://docs.rs/rust_decimal/latest/rust_decimal/trait.MathematicalOps.html) trait. Please note that `ln` and `log10` will panic on invalid input with `checked_ln` and `checked_log10` the preferred functions to curb against this. When the `maths` feature was first developed the library would return `0` on invalid input. To re-enable this non-panicking behavior, please use the feature: `maths-nopanic`. ### `rand` Implements `rand::distributions::Distribution` to allow the creation of random instances. Note: When using `rand::Rng` trait to generate a decimal between a range of two other decimals, the scale of the randomly-generated decimal will be the same as the scale of the input decimals (or, if the inputs have different scales, the higher of the two). ### `rkyv` Enables [rkyv](https://github.com/rkyv/rkyv) serialization for `Decimal`. Supports rkyv's safe API when the `rkyv-safe` feature is enabled as well. ### `rocket-traits` Enable support for Rocket forms by implementing the `FromFormField` trait. ### `rust-fuzz` Enable `rust-fuzz` support by implementing the `Arbitrary` trait. ### `serde-float` **Note:** it is recommended to use the `serde-with-*` features for greater control. This allows configurability at the data level. Enable this so that JSON serialization of `Decimal` types are sent as a float instead of a string (default). e.g. with this turned on, JSON serialization would output: ```json { "value": 1.234 } ``` ### `serde-str` **Note:** it is recommended to use the `serde-with-*` features for greater control. This allows configurability at the data level. This is typically useful for `bincode` or `csv` like implementations. Since `bincode` does not specify type information, we need to ensure that a type hint is provided in order to correctly be able to deserialize. Enabling this feature on its own will force deserialization to use `deserialize_str` instead of `deserialize_any`. If, for some reason, you also have `serde-float` enabled then this will use `deserialize_f64` as a type hint. Because converting to `f64` _loses_ precision, it's highly recommended that you do NOT enable this feature when working with `bincode`. That being said, this will only use 8 bytes so is slightly more efficient in terms of storage size. ### `serde-arbitrary-precision` **Note:** it is recommended to use the `serde-with-*` features for greater control. This allows configurability at the data level. This is used primarily with `serde_json` and consequently adds it as a "weak dependency". This supports the `arbitrary_precision` feature inside `serde_json` when parsing decimals. This is recommended when parsing "float" looking data as it will prevent data loss. ### `serde-with-float` Enable this to access the module for serializing `Decimal` types to a float. This can be use in `struct` definitions like so: ```rust #[derive(Serialize, Deserialize)] pub struct FloatExample { #[serde(with = "rust_decimal::serde::float")] value: Decimal, } ``` ```rust #[derive(Serialize, Deserialize)] pub struct OptionFloatExample { #[serde(with = "rust_decimal::serde::float_option")] value: Option, } ``` ### `serde-with-str` Enable this to access the module for serializing `Decimal` types to a `String`. This can be use in `struct` definitions like so: ```rust #[derive(Serialize, Deserialize)] pub struct StrExample { #[serde(with = "rust_decimal::serde::str")] value: Decimal, } ``` ```rust #[derive(Serialize, Deserialize)] pub struct OptionStrExample { #[serde(with = "rust_decimal::serde::str_option")] value: Option, } ``` ### `serde-with-arbitrary-precision` Enable this to access the module for serializing `Decimal` types to a `String`. This can be use in `struct` definitions like so: ```rust #[derive(Serialize, Deserialize)] pub struct ArbitraryExample { #[serde(with = "rust_decimal::serde::arbitrary_precision")] value: Decimal, } ``` ```rust #[derive(Serialize, Deserialize)] pub struct OptionArbitraryExample { #[serde(with = "rust_decimal::serde::arbitrary_precision_option")] value: Option, } ``` ### `std` Enable `std` library support. This is enabled by default, however in the future will be opt in. For now, to support `no_std` libraries, this crate can be compiled with `--no-default-features`. ## Building Please refer to the [Build document](BUILD.md) for more information on building and testing Rust Decimal. ## Minimum Rust Compiler Version The current _minimum_ compiler version is [`1.60.0`](https://github.com/rust-lang/rust/blob/master/RELEASES.md#version-1600-2022-04-07) which was released on `2022-04-07`. This library maintains support for rust compiler versions that are 4 minor versions away from the current stable rust compiler version. For example, if the current stable compiler version is `1.50.0` then we will guarantee support up to and including `1.46.0`. Of note, we will only update the minimum supported version if and when required.