// Translated from C to Rust. The original C code can be found at // https://github.com/ulfjack/ryu and carries the following license: // // Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. use crate::d2s; pub const FLOAT_POW5_INV_BITCOUNT: i32 = d2s::DOUBLE_POW5_INV_BITCOUNT - 64; pub const FLOAT_POW5_BITCOUNT: i32 = d2s::DOUBLE_POW5_BITCOUNT - 64; #[cfg_attr(feature = "no-panic", inline)] fn pow5factor_32(mut value: u32) -> u32 { let mut count = 0u32; loop { debug_assert!(value != 0); let q = value / 5; let r = value % 5; if r != 0 { break; } value = q; count += 1; } count } // Returns true if value is divisible by 5^p. #[cfg_attr(feature = "no-panic", inline)] pub fn multiple_of_power_of_5_32(value: u32, p: u32) -> bool { pow5factor_32(value) >= p } // Returns true if value is divisible by 2^p. #[cfg_attr(feature = "no-panic", inline)] pub fn multiple_of_power_of_2_32(value: u32, p: u32) -> bool { // __builtin_ctz doesn't appear to be faster here. (value & ((1u32 << p) - 1)) == 0 } // It seems to be slightly faster to avoid uint128_t here, although the // generated code for uint128_t looks slightly nicer. #[cfg_attr(feature = "no-panic", inline)] fn mul_shift_32(m: u32, factor: u64, shift: i32) -> u32 { debug_assert!(shift > 32); // The casts here help MSVC to avoid calls to the __allmul library // function. let factor_lo = factor as u32; let factor_hi = (factor >> 32) as u32; let bits0 = m as u64 * factor_lo as u64; let bits1 = m as u64 * factor_hi as u64; let sum = (bits0 >> 32) + bits1; let shifted_sum = sum >> (shift - 32); debug_assert!(shifted_sum <= u32::max_value() as u64); shifted_sum as u32 } #[cfg_attr(feature = "no-panic", inline)] pub fn mul_pow5_inv_div_pow2(m: u32, q: u32, j: i32) -> u32 { #[cfg(feature = "small")] { // The inverse multipliers are defined as [2^x / 5^y] + 1; the upper 64 // bits from the double lookup table are the correct bits for [2^x / // 5^y], so we have to add 1 here. Note that we rely on the fact that // the added 1 that's already stored in the table never overflows into // the upper 64 bits. let pow5 = unsafe { d2s::compute_inv_pow5(q) }; mul_shift_32(m, pow5.1 + 1, j) } #[cfg(not(feature = "small"))] { debug_assert!(q < d2s::DOUBLE_POW5_INV_SPLIT.len() as u32); unsafe { mul_shift_32( m, d2s::DOUBLE_POW5_INV_SPLIT.get_unchecked(q as usize).1 + 1, j, ) } } } #[cfg_attr(feature = "no-panic", inline)] pub fn mul_pow5_div_pow2(m: u32, i: u32, j: i32) -> u32 { #[cfg(feature = "small")] { let pow5 = unsafe { d2s::compute_pow5(i) }; mul_shift_32(m, pow5.1, j) } #[cfg(not(feature = "small"))] { debug_assert!(i < d2s::DOUBLE_POW5_SPLIT.len() as u32); unsafe { mul_shift_32(m, d2s::DOUBLE_POW5_SPLIT.get_unchecked(i as usize).1, j) } } }