//! # Scroll //! //! ```text, no_run //! _______________ //! ()==( (@==() //! '______________'| //! | | //! | ἀρετή | //! __)_____________| //! ()==( (@==() //! '--------------' //! //! ``` //! //! Scroll is a library for easily and efficiently reading/writing types from data containers like //! byte arrays. //! //! ## Easily: //! //! Scroll sets down a number of traits: //! //! [FromCtx](ctx/trait.FromCtx.html), [IntoCtx](ctx/trait.IntoCtx.html), //! [TryFromCtx](ctx/trait.TryFromCtx.html) and [TryIntoCtx](ctx/trait.TryIntoCtx.html) — further //! explained in the [ctx module](ctx/index.html); to be implemented on custom types to allow //! reading, writing, and potentially fallible reading/writing respectively. //! //! [Pread](trait.Pread.html) and [Pwrite](trait.Pwrite.html) which are implemented on data //! containers such as byte arrays to define how to read or respectively write types implementing //! the *Ctx traits above. //! In addition scroll also defines [IOread](trait.IOread.html) and //! [IOwrite](trait.IOwrite.html) with additional constraits that then allow reading and writing //! from `std::io` [Read](https://doc.rust-lang.org/nightly/std/io/trait.Read.html) and //! [Write](https://doc.rust-lang.org/nightly/std/io/trait.Write.html). //! //! //! In most cases you can use [scroll_derive](https://docs.rs/scroll_derive) to derive sensible //! defaults for `Pread`, `Pwrite`, their IO counterpart and `SizeWith`. More complex situations //! call for manual implementation of those traits; refer to [the ctx module](ctx/index.html) for //! details. //! //! //! ## Efficiently: //! //! Reading Slices — including [&str](https://doc.rust-lang.org/std/primitive.str.html) — supports //! zero-copy. Scroll is designed with a `no_std` context in mind; every dependency on `std` is //! cfg-gated and errors need not allocate. //! //! Reads by default take only immutable references wherever possible, allowing for trivial //! parallelization. //! //! # Examples //! //! Let's start with a simple example //! //! ```rust //! use scroll::{ctx, Pread}; //! //! // Let's first define some data, cfg-gated so our assertions later on hold. //! #[cfg(target_endian = "little")] //! let bytes: [u8; 4] = [0xde, 0xad, 0xbe, 0xef]; //! #[cfg(target_endian = "big")] //! let bytes: [u8; 4] = [0xef, 0xbe, 0xad, 0xde]; //! //! // We can read a u32 from the array `bytes` at offset 0. //! // This will use a default context for the type being parsed; //! // in the case of u32 this defines to use the host's endianess. //! let number = bytes.pread::(0).unwrap(); //! assert_eq!(number, 0xefbeadde); //! //! //! // Similarly we can also read a single byte at offset 2 //! // This time using type ascription instead of the turbofish (::<>) operator. //! let byte: u8 = bytes.pread(2).unwrap(); //! #[cfg(target_endian = "little")] //! assert_eq!(byte, 0xbe); //! #[cfg(target_endian = "big")] //! assert_eq!(byte, 0xad); //! //! //! // If required we can also provide a specific parsing context; e.g. if we want to explicitly //! // define the endianess to use: //! let be_number: u32 = bytes.pread_with(0, scroll::BE).unwrap(); //! #[cfg(target_endian = "little")] //! assert_eq!(be_number, 0xdeadbeef); //! #[cfg(target_endian = "big")] //! assert_eq!(be_number, 0xefbeadde); //! //! let be_number16 = bytes.pread_with::(1, scroll::BE).unwrap(); //! #[cfg(target_endian = "little")] //! assert_eq!(be_number16, 0xadbe); //! #[cfg(target_endian = "big")] //! assert_eq!(be_number16, 0xbead); //! //! //! // Reads may fail; in this example due to a too large read for the given container. //! // Scroll's error type does not by default allocate to work in environments like no_std. //! let byte_err: scroll::Result = bytes.pread(0); //! assert!(byte_err.is_err()); //! //! //! // We can parse out custom datatypes, or types with lifetimes, as long as they implement //! // the conversion traits `TryFromCtx/FromCtx`. //! // Here we use the default context for &str which parses are C-style '\0'-delimited string. //! let hello: &[u8] = b"hello world\0more words"; //! let hello_world: &str = hello.pread(0).unwrap(); //! assert_eq!("hello world", hello_world); //! //! // We can again provide a custom context; for example to parse Space-delimited strings. //! // As you can see while we still call `pread` changing the context can influence the output — //! // instead of splitting at '\0' we split at spaces //! let hello2: &[u8] = b"hello world\0more words"; //! let world: &str = hello2.pread_with(6, ctx::StrCtx::Delimiter(ctx::SPACE)).unwrap(); //! assert_eq!("world\0more", world); //! ``` //! //! ## `std::io` API //! //! Scroll also allows reading from `std::io`. For this the types to read need to implement //! [FromCtx](ctx/trait.FromCtx.html) and [SizeWith](ctx/trait.SizeWith.html). //! //! ```rust //! use std::io::Cursor; //! use scroll::{IOread, ctx, Endian}; //! let bytes = [0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xef,0xbe,0x00,0x00,]; //! let mut cursor = Cursor::new(bytes); //! //! // IOread uses std::io::Read methods, thus the Cursor will be incremented on these reads: //! let prev = cursor.position(); //! //! let integer = cursor.ioread_with::(Endian::Little).unwrap(); //! //! let after = cursor.position(); //! //! assert!(prev < after); //! //! // SizeWith allows us to define a context-sensitive size of a read type: //! // Contexts can have different instantiations; e.g. the `Endian` context can be either Little or //! // Big. This is useful if for example the context contains the word-size of fields to be //! // read/written, e.g. switching between ELF32 or ELF64 at runtime. //! let size = >::size_with(&Endian::Little) as u64; //! assert_eq!(prev + size, after); //! ``` //! //! In the same vein as IOread we can use IOwrite to write a type to anything implementing //! `std::io::Write`: //! //! ```rust //! use std::io::Cursor; //! use scroll::{IOwrite}; //! //! let mut bytes = [0x0u8; 5]; //! let mut cursor = Cursor::new(&mut bytes[..]); //! //! // This of course once again increments the cursor position //! cursor.iowrite_with(0xdeadbeef as u32, scroll::BE).unwrap(); //! //! assert_eq!(cursor.into_inner(), [0xde, 0xad, 0xbe, 0xef, 0x0]); //! ``` //! //! ## Complex use cases //! //! Scoll is designed to be highly adaptable while providing a strong abstraction between the types //! being read/written and the data container containing them. //! //! In this example we'll define a custom Data and allow it to be read from an arbitrary byte //! buffer. //! //! ```rust //! use scroll::{self, ctx, Pread, Endian}; //! use scroll::ctx::StrCtx; //! //! // Our custom context type. In a more complex situation you could for example store details on //! // how to write or read your type, field-sizes or other information. //! // In this simple example we could also do without using a custom context in the first place. //! #[derive(Copy, Clone)] //! struct Context(Endian); //! //! // Our custom data type //! struct Data<'zerocopy> { //! // This is only a reference to the actual data; we make use of scroll's zero-copy capability //! name: &'zerocopy str, //! id: u32, //! } //! //! // To allow for safe zero-copying scroll allows to specify lifetimes explicitly: //! // The context //! impl<'a> ctx::TryFromCtx<'a, Context> for Data<'a> { //! // If necessary you can set a custom error type here, which will be returned by Pread/Pwrite //! type Error = scroll::Error; //! //! // Using the explicit lifetime specification again you ensure that read data doesn't outlife //! // its source buffer without having to resort to copying. //! fn try_from_ctx (src: &'a [u8], ctx: Context) //! // the `usize` returned here is the amount of bytes read. //! -> Result<(Self, usize), Self::Error> //! { //! let offset = &mut 0; //! //! let id = src.gread_with(offset, ctx.0)?; //! //! // In a more serious application you would validate data here of course. //! let namelen: u16 = src.gread_with(offset, ctx.0)?; //! let name = src.gread_with::<&str>(offset, StrCtx::Length(namelen as usize))?; //! //! Ok((Data { name: name, id: id }, *offset)) //! } //! } //! //! // In lieu of a complex byte buffer we hearken back to a simple &[u8]; the default source //! // of TryFromCtx. However, any type that implements Pread to produce a &[u8] can now read //! // `Data` thanks to it's implementation of TryFromCtx. //! let bytes = b"\x01\x02\x03\x04\x00\x08UserName"; //! let data: Data = bytes.pread_with(0, Context(Endian::Big)).unwrap(); //! //! assert_eq!(data.id, 0x01020304); //! assert_eq!(data.name.to_string(), "UserName".to_string()); //! ``` //! //! For further explanation of the traits and how to implement them manually refer to //! [Pread](trait.Pread.html) and [TryFromCtx](ctx/trait.TryFromCtx.html). #![cfg_attr(not(feature = "std"), no_std)] #[cfg(feature = "derive")] #[allow(unused_imports)] pub use scroll_derive::{IOread, IOwrite, Pread, Pwrite, SizeWith}; #[cfg(feature = "std")] extern crate core; pub mod ctx; mod endian; mod error; mod greater; mod leb128; #[cfg(feature = "std")] mod lesser; mod pread; mod pwrite; pub use crate::endian::*; pub use crate::error::*; pub use crate::greater::*; pub use crate::leb128::*; #[cfg(feature = "std")] pub use crate::lesser::*; pub use crate::pread::*; pub use crate::pwrite::*; #[doc(hidden)] pub mod export { pub use ::core::mem; pub use ::core::result; } #[allow(unused)] macro_rules! doc_comment { ($x:expr) => { #[doc = $x] #[doc(hidden)] mod readme_tests {} }; } #[cfg(feature = "derive")] doc_comment!(include_str!("../README.md")); #[cfg(test)] mod tests { #[allow(overflowing_literals)] use super::LE; #[test] fn test_measure_with_bytes() { use super::ctx::MeasureWith; let bytes: [u8; 4] = [0xef, 0xbe, 0xad, 0xde]; assert_eq!(bytes.measure_with(&()), 4); } #[test] fn test_measurable() { use super::ctx::SizeWith; assert_eq!(8, u64::size_with(&LE)); } ////////////////////////////////////////////////////////////// // begin pread_with ////////////////////////////////////////////////////////////// macro_rules! pwrite_test { ($write:ident, $read:ident, $deadbeef:expr) => { #[test] fn $write() { use super::{Pread, Pwrite, BE}; let mut bytes: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0]; let b = &mut bytes[..]; b.pwrite_with::<$read>($deadbeef, 0, LE).unwrap(); assert_eq!(b.pread_with::<$read>(0, LE).unwrap(), $deadbeef); b.pwrite_with::<$read>($deadbeef, 0, BE).unwrap(); assert_eq!(b.pread_with::<$read>(0, BE).unwrap(), $deadbeef); } }; } pwrite_test!(pwrite_and_pread_roundtrip_u16, u16, 0xbeef); pwrite_test!(pwrite_and_pread_roundtrip_i16, i16, 0x7eef); pwrite_test!(pwrite_and_pread_roundtrip_u32, u32, 0xbeefbeef); pwrite_test!(pwrite_and_pread_roundtrip_i32, i32, 0x7eefbeef); pwrite_test!(pwrite_and_pread_roundtrip_u64, u64, 0xbeefbeef7eef7eef); pwrite_test!(pwrite_and_pread_roundtrip_i64, i64, 0x7eefbeef7eef7eef); #[test] fn pread_with_be() { use super::Pread; let bytes: [u8; 2] = [0x7e, 0xef]; let b = &bytes[..]; let byte: u16 = b.pread_with(0, super::BE).unwrap(); assert_eq!(0x7eef, byte); let bytes: [u8; 2] = [0xde, 0xad]; let dead: u16 = bytes.pread_with(0, super::BE).unwrap(); assert_eq!(0xdead, dead); } #[test] fn pread() { use super::Pread; let bytes: [u8; 2] = [0x7e, 0xef]; let b = &bytes[..]; let byte: u16 = b.pread(0).unwrap(); #[cfg(target_endian = "little")] assert_eq!(0xef7e, byte); #[cfg(target_endian = "big")] assert_eq!(0x7eef, byte); } #[test] fn pread_slice() { use super::ctx::StrCtx; use super::Pread; let bytes: [u8; 2] = [0x7e, 0xef]; let b = &bytes[..]; let iserr: Result<&str, _> = b.pread_with(0, StrCtx::Length(3)); assert!(iserr.is_err()); // let bytes2: &[u8] = b.pread_with(0, 2).unwrap(); // assert_eq!(bytes2.len(), bytes[..].len()); // for i in 0..bytes2.len() { // assert_eq!(bytes2[i], bytes[i]) // } } #[test] fn pread_str() { use super::ctx::*; use super::Pread; let bytes: [u8; 2] = [0x2e, 0x0]; let b = &bytes[..]; let s: &str = b.pread(0).unwrap(); println!("str: {}", s); assert_eq!(s.len(), bytes[..].len() - 1); let bytes: &[u8] = b"hello, world!\0some_other_things"; let hello_world: &str = bytes.pread_with(0, StrCtx::Delimiter(NULL)).unwrap(); println!("{:?}", &hello_world); assert_eq!(hello_world.len(), 13); let hello: &str = bytes.pread_with(0, StrCtx::Delimiter(SPACE)).unwrap(); println!("{:?}", &hello); assert_eq!(hello.len(), 6); // this could result in underflow so we just try it let _error = bytes.pread_with::<&str>(6, StrCtx::Delimiter(SPACE)); let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE)); println!("{:?}", &error); assert!(error.is_ok()); } #[test] fn pread_str_weird() { use super::ctx::*; use super::Pread; let bytes: &[u8] = b""; let hello_world = bytes.pread_with::<&str>(0, StrCtx::Delimiter(NULL)); println!("1 {:?}", &hello_world); assert_eq!(hello_world.is_err(), true); let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE)); println!("2 {:?}", &error); assert!(error.is_err()); let bytes: &[u8] = b"\0"; let null = bytes.pread::<&str>(0).unwrap(); println!("3 {:?}", &null); assert_eq!(null.len(), 0); } #[test] fn pwrite_str_and_bytes() { use super::ctx::*; use super::{Pread, Pwrite}; let astring: &str = "lol hello_world lal\0ala imabytes"; let mut buffer = [0u8; 33]; buffer.pwrite(astring, 0).unwrap(); { let hello_world = buffer .pread_with::<&str>(4, StrCtx::Delimiter(SPACE)) .unwrap(); assert_eq!(hello_world, "hello_world"); } let bytes: &[u8] = b"more\0bytes"; buffer.pwrite(bytes, 0).unwrap(); let more = bytes .pread_with::<&str>(0, StrCtx::Delimiter(NULL)) .unwrap(); assert_eq!(more, "more"); let bytes = bytes .pread_with::<&str>(more.len() + 1, StrCtx::Delimiter(NULL)) .unwrap(); assert_eq!(bytes, "bytes"); } use std::error; use std::fmt::{self, Display}; #[derive(Debug)] pub struct ExternalError {} impl Display for ExternalError { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "ExternalError") } } impl error::Error for ExternalError { fn description(&self) -> &str { "ExternalError" } fn cause(&self) -> Option<&dyn error::Error> { None } } impl From for ExternalError { fn from(err: super::Error) -> Self { //use super::Error::*; match err { _ => ExternalError {}, } } } #[derive(Debug, PartialEq, Eq)] pub struct Foo(u16); impl super::ctx::TryIntoCtx for Foo { type Error = ExternalError; fn try_into_ctx(self, this: &mut [u8], le: super::Endian) -> Result { use super::Pwrite; if this.len() < 2 { return Err((ExternalError {}).into()); } this.pwrite_with(self.0, 0, le)?; Ok(2) } } impl<'a> super::ctx::TryFromCtx<'a, super::Endian> for Foo { type Error = ExternalError; fn try_from_ctx(this: &'a [u8], le: super::Endian) -> Result<(Self, usize), Self::Error> { use super::Pread; if this.len() > 2 { return Err((ExternalError {}).into()); } let n = this.pread_with(0, le)?; Ok((Foo(n), 2)) } } #[test] fn pread_with_iter_bytes() { use super::Pread; let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0]; let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8]; let bytes_to = &mut bytes_to[..]; let bytes_from = &bytes_from[..]; for i in 0..bytes_from.len() { bytes_to[i] = bytes_from.pread(i).unwrap(); } assert_eq!(bytes_to, bytes_from); } ////////////////////////////////////////////////////////////// // end pread_with ////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////// // begin gread_with ////////////////////////////////////////////////////////////// macro_rules! g_test { ($read:ident, $deadbeef:expr, $typ:ty) => { #[test] fn $read() { use super::Pread; let bytes: [u8; 8] = [0xf, 0xe, 0xe, 0xb, 0xd, 0xa, 0xe, 0xd]; let mut offset = 0; let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap(); assert_eq!(deadbeef, $deadbeef as $typ); assert_eq!(offset, ::std::mem::size_of::<$typ>()); } }; } g_test!(simple_gread_u16, 0xe0f, u16); g_test!(simple_gread_u32, 0xb0e0e0f, u32); g_test!(simple_gread_u64, 0xd0e0a0d0b0e0e0f, u64); g_test!(simple_gread_i64, 940700423303335439, i64); macro_rules! simple_float_test { ($read:ident, $deadbeef:expr, $typ:ty) => { #[test] fn $read() { use super::Pread; let bytes: [u8; 8] = [0u8, 0, 0, 0, 0, 0, 224, 63]; let mut offset = 0; let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap(); assert_eq!(deadbeef, $deadbeef as $typ); assert_eq!(offset, ::std::mem::size_of::<$typ>()); } }; } simple_float_test!(gread_f32, 0.0, f32); simple_float_test!(gread_f64, 0.5, f64); macro_rules! g_read_write_test { ($read:ident, $val:expr, $typ:ty) => { #[test] fn $read() { use super::{Pread, Pwrite, BE, LE}; let mut buffer = [0u8; 16]; let offset = &mut 0; buffer.gwrite_with($val.clone(), offset, LE).unwrap(); let o2 = &mut 0; let val: $typ = buffer.gread_with(o2, LE).unwrap(); assert_eq!(val, $val); assert_eq!(*offset, ::std::mem::size_of::<$typ>()); assert_eq!(*o2, ::std::mem::size_of::<$typ>()); assert_eq!(*o2, *offset); buffer.gwrite_with($val.clone(), offset, BE).unwrap(); let val: $typ = buffer.gread_with(o2, BE).unwrap(); assert_eq!(val, $val); } }; } g_read_write_test!(gread_gwrite_f64_1, 0.25f64, f64); g_read_write_test!(gread_gwrite_f64_2, 0.5f64, f64); g_read_write_test!(gread_gwrite_f64_3, 0.064, f64); g_read_write_test!(gread_gwrite_f32_1, 0.25f32, f32); g_read_write_test!(gread_gwrite_f32_2, 0.5f32, f32); g_read_write_test!(gread_gwrite_f32_3, 0.0f32, f32); g_read_write_test!(gread_gwrite_i64_1, 0i64, i64); g_read_write_test!(gread_gwrite_i64_2, -1213213211111i64, i64); g_read_write_test!(gread_gwrite_i64_3, -3000i64, i64); g_read_write_test!(gread_gwrite_i32_1, 0i32, i32); g_read_write_test!(gread_gwrite_i32_2, -1213213232, i32); g_read_write_test!(gread_gwrite_i32_3, -3000i32, i32); // useful for ferreting out problems with impls #[test] fn gread_with_iter_bytes() { use super::Pread; let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0]; let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8]; let bytes_to = &mut bytes_to[..]; let bytes_from = &bytes_from[..]; let mut offset = &mut 0; for i in 0..bytes_from.len() { bytes_to[i] = bytes_from.gread(&mut offset).unwrap(); } assert_eq!(bytes_to, bytes_from); assert_eq!(*offset, bytes_to.len()); } #[test] fn gread_inout() { use super::Pread; let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0]; let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8]; let bytes = &bytes_from[..]; let offset = &mut 0; bytes.gread_inout(offset, &mut bytes_to[..]).unwrap(); assert_eq!(bytes_to, bytes_from); assert_eq!(*offset, bytes_to.len()); } #[test] fn gread_with_byte() { use super::Pread; let bytes: [u8; 1] = [0x7f]; let b = &bytes[..]; let offset = &mut 0; let byte: u8 = b.gread(offset).unwrap(); assert_eq!(0x7f, byte); assert_eq!(*offset, 1); } #[test] fn gread_slice() { use super::ctx::StrCtx; use super::Pread; let bytes: [u8; 2] = [0x7e, 0xef]; let b = &bytes[..]; let offset = &mut 0; let res = b.gread_with::<&str>(offset, StrCtx::Length(3)); assert!(res.is_err()); *offset = 0; let astring: [u8; 3] = [0x45, 042, 0x44]; let string = astring.gread_with::<&str>(offset, StrCtx::Length(2)); match &string { &Ok(_) => {} &Err(ref err) => { println!("{}", &err); panic!(); } } assert_eq!(string.unwrap(), "E*"); *offset = 0; let bytes2: &[u8] = b.gread_with(offset, 2).unwrap(); assert_eq!(*offset, 2); assert_eq!(bytes2.len(), bytes[..].len()); for i in 0..bytes2.len() { assert_eq!(bytes2[i], bytes[i]) } } ///////////////////////////////////////////////////////////////// // end gread_with ///////////////////////////////////////////////////////////////// }