use internals::respan::respan; use internals::symbol::*; use internals::{ungroup, Ctxt}; use proc_macro2::{Spacing, Span, TokenStream, TokenTree}; use quote::ToTokens; use std::borrow::Cow; use std::collections::BTreeSet; use syn; use syn::parse::{self, Parse, ParseStream}; use syn::punctuated::Punctuated; use syn::Ident; use syn::Meta::{List, NameValue, Path}; use syn::NestedMeta::{Lit, Meta}; // This module handles parsing of `#[serde(...)]` attributes. The entrypoints // are `attr::Container::from_ast`, `attr::Variant::from_ast`, and // `attr::Field::from_ast`. Each returns an instance of the corresponding // struct. Note that none of them return a Result. Unrecognized, malformed, or // duplicated attributes result in a span_err but otherwise are ignored. The // user will see errors simultaneously for all bad attributes in the crate // rather than just the first. pub use internals::case::RenameRule; struct Attr<'c, T> { cx: &'c Ctxt, name: Symbol, tokens: TokenStream, value: Option, } impl<'c, T> Attr<'c, T> { fn none(cx: &'c Ctxt, name: Symbol) -> Self { Attr { cx, name, tokens: TokenStream::new(), value: None, } } fn set(&mut self, obj: A, value: T) { let tokens = obj.into_token_stream(); if self.value.is_some() { self.cx .error_spanned_by(tokens, format!("duplicate serde attribute `{}`", self.name)); } else { self.tokens = tokens; self.value = Some(value); } } fn set_opt(&mut self, obj: A, value: Option) { if let Some(value) = value { self.set(obj, value); } } fn set_if_none(&mut self, value: T) { if self.value.is_none() { self.value = Some(value); } } fn get(self) -> Option { self.value } fn get_with_tokens(self) -> Option<(TokenStream, T)> { match self.value { Some(v) => Some((self.tokens, v)), None => None, } } } struct BoolAttr<'c>(Attr<'c, ()>); impl<'c> BoolAttr<'c> { fn none(cx: &'c Ctxt, name: Symbol) -> Self { BoolAttr(Attr::none(cx, name)) } fn set_true(&mut self, obj: A) { self.0.set(obj, ()); } fn get(&self) -> bool { self.0.value.is_some() } } struct VecAttr<'c, T> { cx: &'c Ctxt, name: Symbol, first_dup_tokens: TokenStream, values: Vec, } impl<'c, T> VecAttr<'c, T> { fn none(cx: &'c Ctxt, name: Symbol) -> Self { VecAttr { cx, name, first_dup_tokens: TokenStream::new(), values: Vec::new(), } } fn insert(&mut self, obj: A, value: T) { if self.values.len() == 1 { self.first_dup_tokens = obj.into_token_stream(); } self.values.push(value); } fn at_most_one(mut self) -> Result, ()> { if self.values.len() > 1 { let dup_token = self.first_dup_tokens; self.cx.error_spanned_by( dup_token, format!("duplicate serde attribute `{}`", self.name), ); Err(()) } else { Ok(self.values.pop()) } } fn get(self) -> Vec { self.values } } pub struct Name { serialize: String, serialize_renamed: bool, deserialize: String, deserialize_renamed: bool, deserialize_aliases: Vec, } #[allow(deprecated)] fn unraw(ident: &Ident) -> String { // str::trim_start_matches was added in 1.30, trim_left_matches deprecated // in 1.33. We currently support rustc back to 1.15 so we need to continue // to use the deprecated one. ident.to_string().trim_left_matches("r#").to_owned() } impl Name { fn from_attrs( source_name: String, ser_name: Attr, de_name: Attr, de_aliases: Option>, ) -> Name { let deserialize_aliases = match de_aliases { Some(de_aliases) => { let mut alias_list = BTreeSet::new(); for alias_name in de_aliases.get() { alias_list.insert(alias_name); } alias_list.into_iter().collect() } None => Vec::new(), }; let ser_name = ser_name.get(); let ser_renamed = ser_name.is_some(); let de_name = de_name.get(); let de_renamed = de_name.is_some(); Name { serialize: ser_name.unwrap_or_else(|| source_name.clone()), serialize_renamed: ser_renamed, deserialize: de_name.unwrap_or(source_name), deserialize_renamed: de_renamed, deserialize_aliases, } } /// Return the container name for the container when serializing. pub fn serialize_name(&self) -> String { self.serialize.clone() } /// Return the container name for the container when deserializing. pub fn deserialize_name(&self) -> String { self.deserialize.clone() } fn deserialize_aliases(&self) -> Vec { let mut aliases = self.deserialize_aliases.clone(); let main_name = self.deserialize_name(); if !aliases.contains(&main_name) { aliases.push(main_name); } aliases } } pub struct RenameAllRules { serialize: RenameRule, deserialize: RenameRule, } /// Represents struct or enum attribute information. pub struct Container { name: Name, transparent: bool, deny_unknown_fields: bool, default: Default, rename_all_rules: RenameAllRules, ser_bound: Option>, de_bound: Option>, tag: TagType, type_from: Option, type_try_from: Option, type_into: Option, remote: Option, identifier: Identifier, has_flatten: bool, serde_path: Option, is_packed: bool, /// Error message generated when type can't be deserialized expecting: Option, } /// Styles of representing an enum. pub enum TagType { /// The default. /// /// ```json /// {"variant1": {"key1": "value1", "key2": "value2"}} /// ``` External, /// `#[serde(tag = "type")]` /// /// ```json /// {"type": "variant1", "key1": "value1", "key2": "value2"} /// ``` Internal { tag: String }, /// `#[serde(tag = "t", content = "c")]` /// /// ```json /// {"t": "variant1", "c": {"key1": "value1", "key2": "value2"}} /// ``` Adjacent { tag: String, content: String }, /// `#[serde(untagged)]` /// /// ```json /// {"key1": "value1", "key2": "value2"} /// ``` None, } /// Whether this enum represents the fields of a struct or the variants of an /// enum. #[derive(Copy, Clone)] pub enum Identifier { /// It does not. No, /// This enum represents the fields of a struct. All of the variants must be /// unit variants, except possibly one which is annotated with /// `#[serde(other)]` and is a newtype variant. Field, /// This enum represents the variants of an enum. All of the variants must /// be unit variants. Variant, } impl Identifier { #[cfg(feature = "deserialize_in_place")] pub fn is_some(self) -> bool { match self { Identifier::No => false, Identifier::Field | Identifier::Variant => true, } } } impl Container { /// Extract out the `#[serde(...)]` attributes from an item. pub fn from_ast(cx: &Ctxt, item: &syn::DeriveInput) -> Self { let mut ser_name = Attr::none(cx, RENAME); let mut de_name = Attr::none(cx, RENAME); let mut transparent = BoolAttr::none(cx, TRANSPARENT); let mut deny_unknown_fields = BoolAttr::none(cx, DENY_UNKNOWN_FIELDS); let mut default = Attr::none(cx, DEFAULT); let mut rename_all_ser_rule = Attr::none(cx, RENAME_ALL); let mut rename_all_de_rule = Attr::none(cx, RENAME_ALL); let mut ser_bound = Attr::none(cx, BOUND); let mut de_bound = Attr::none(cx, BOUND); let mut untagged = BoolAttr::none(cx, UNTAGGED); let mut internal_tag = Attr::none(cx, TAG); let mut content = Attr::none(cx, CONTENT); let mut type_from = Attr::none(cx, FROM); let mut type_try_from = Attr::none(cx, TRY_FROM); let mut type_into = Attr::none(cx, INTO); let mut remote = Attr::none(cx, REMOTE); let mut field_identifier = BoolAttr::none(cx, FIELD_IDENTIFIER); let mut variant_identifier = BoolAttr::none(cx, VARIANT_IDENTIFIER); let mut serde_path = Attr::none(cx, CRATE); let mut expecting = Attr::none(cx, EXPECTING); for meta_item in item .attrs .iter() .flat_map(|attr| get_serde_meta_items(cx, attr)) .flatten() { match &meta_item { // Parse `#[serde(rename = "foo")]` Meta(NameValue(m)) if m.path == RENAME => { if let Ok(s) = get_lit_str(cx, RENAME, &m.lit) { ser_name.set(&m.path, s.value()); de_name.set(&m.path, s.value()); } } // Parse `#[serde(rename(serialize = "foo", deserialize = "bar"))]` Meta(List(m)) if m.path == RENAME => { if let Ok((ser, de)) = get_renames(cx, &m.nested) { ser_name.set_opt(&m.path, ser.map(syn::LitStr::value)); de_name.set_opt(&m.path, de.map(syn::LitStr::value)); } } // Parse `#[serde(rename_all = "foo")]` Meta(NameValue(m)) if m.path == RENAME_ALL => { if let Ok(s) = get_lit_str(cx, RENAME_ALL, &m.lit) { match RenameRule::from_str(&s.value()) { Ok(rename_rule) => { rename_all_ser_rule.set(&m.path, rename_rule); rename_all_de_rule.set(&m.path, rename_rule); } Err(err) => cx.error_spanned_by(s, err), } } } // Parse `#[serde(rename_all(serialize = "foo", deserialize = "bar"))]` Meta(List(m)) if m.path == RENAME_ALL => { if let Ok((ser, de)) = get_renames(cx, &m.nested) { if let Some(ser) = ser { match RenameRule::from_str(&ser.value()) { Ok(rename_rule) => rename_all_ser_rule.set(&m.path, rename_rule), Err(err) => cx.error_spanned_by(ser, err), } } if let Some(de) = de { match RenameRule::from_str(&de.value()) { Ok(rename_rule) => rename_all_de_rule.set(&m.path, rename_rule), Err(err) => cx.error_spanned_by(de, err), } } } } // Parse `#[serde(transparent)]` Meta(Path(word)) if word == TRANSPARENT => { transparent.set_true(word); } // Parse `#[serde(deny_unknown_fields)]` Meta(Path(word)) if word == DENY_UNKNOWN_FIELDS => { deny_unknown_fields.set_true(word); } // Parse `#[serde(default)]` Meta(Path(word)) if word == DEFAULT => match &item.data { syn::Data::Struct(syn::DataStruct { fields, .. }) => match fields { syn::Fields::Named(_) => { default.set(word, Default::Default); } syn::Fields::Unnamed(_) | syn::Fields::Unit => cx.error_spanned_by( fields, "#[serde(default)] can only be used on structs with named fields", ), }, syn::Data::Enum(syn::DataEnum { enum_token, .. }) => cx.error_spanned_by( enum_token, "#[serde(default)] can only be used on structs with named fields", ), syn::Data::Union(syn::DataUnion { union_token, .. }) => cx.error_spanned_by( union_token, "#[serde(default)] can only be used on structs with named fields", ), }, // Parse `#[serde(default = "...")]` Meta(NameValue(m)) if m.path == DEFAULT => { if let Ok(path) = parse_lit_into_expr_path(cx, DEFAULT, &m.lit) { match &item.data { syn::Data::Struct(syn::DataStruct { fields, .. }) => { match fields { syn::Fields::Named(_) => { default.set(&m.path, Default::Path(path)); } syn::Fields::Unnamed(_) | syn::Fields::Unit => cx .error_spanned_by( fields, "#[serde(default = \"...\")] can only be used on structs with named fields", ), } } syn::Data::Enum(syn::DataEnum { enum_token, .. }) => cx .error_spanned_by( enum_token, "#[serde(default = \"...\")] can only be used on structs with named fields", ), syn::Data::Union(syn::DataUnion { union_token, .. }) => cx.error_spanned_by( union_token, "#[serde(default = \"...\")] can only be used on structs with named fields", ), } } } // Parse `#[serde(bound = "T: SomeBound")]` Meta(NameValue(m)) if m.path == BOUND => { if let Ok(where_predicates) = parse_lit_into_where(cx, BOUND, BOUND, &m.lit) { ser_bound.set(&m.path, where_predicates.clone()); de_bound.set(&m.path, where_predicates); } } // Parse `#[serde(bound(serialize = "...", deserialize = "..."))]` Meta(List(m)) if m.path == BOUND => { if let Ok((ser, de)) = get_where_predicates(cx, &m.nested) { ser_bound.set_opt(&m.path, ser); de_bound.set_opt(&m.path, de); } } // Parse `#[serde(untagged)]` Meta(Path(word)) if word == UNTAGGED => match item.data { syn::Data::Enum(_) => { untagged.set_true(word); } syn::Data::Struct(syn::DataStruct { struct_token, .. }) => { cx.error_spanned_by( struct_token, "#[serde(untagged)] can only be used on enums", ); } syn::Data::Union(syn::DataUnion { union_token, .. }) => { cx.error_spanned_by( union_token, "#[serde(untagged)] can only be used on enums", ); } }, // Parse `#[serde(tag = "type")]` Meta(NameValue(m)) if m.path == TAG => { if let Ok(s) = get_lit_str(cx, TAG, &m.lit) { match &item.data { syn::Data::Enum(_) => { internal_tag.set(&m.path, s.value()); } syn::Data::Struct(syn::DataStruct { fields, .. }) => match fields { syn::Fields::Named(_) => { internal_tag.set(&m.path, s.value()); } syn::Fields::Unnamed(_) | syn::Fields::Unit => { cx.error_spanned_by( fields, "#[serde(tag = \"...\")] can only be used on enums and structs with named fields", ); } }, syn::Data::Union(syn::DataUnion { union_token, .. }) => { cx.error_spanned_by( union_token, "#[serde(tag = \"...\")] can only be used on enums and structs with named fields", ); } } } } // Parse `#[serde(content = "c")]` Meta(NameValue(m)) if m.path == CONTENT => { if let Ok(s) = get_lit_str(cx, CONTENT, &m.lit) { match &item.data { syn::Data::Enum(_) => { content.set(&m.path, s.value()); } syn::Data::Struct(syn::DataStruct { struct_token, .. }) => { cx.error_spanned_by( struct_token, "#[serde(content = \"...\")] can only be used on enums", ); } syn::Data::Union(syn::DataUnion { union_token, .. }) => { cx.error_spanned_by( union_token, "#[serde(content = \"...\")] can only be used on enums", ); } } } } // Parse `#[serde(from = "Type")] Meta(NameValue(m)) if m.path == FROM => { if let Ok(from_ty) = parse_lit_into_ty(cx, FROM, &m.lit) { type_from.set_opt(&m.path, Some(from_ty)); } } // Parse `#[serde(try_from = "Type")] Meta(NameValue(m)) if m.path == TRY_FROM => { if let Ok(try_from_ty) = parse_lit_into_ty(cx, TRY_FROM, &m.lit) { type_try_from.set_opt(&m.path, Some(try_from_ty)); } } // Parse `#[serde(into = "Type")] Meta(NameValue(m)) if m.path == INTO => { if let Ok(into_ty) = parse_lit_into_ty(cx, INTO, &m.lit) { type_into.set_opt(&m.path, Some(into_ty)); } } // Parse `#[serde(remote = "...")]` Meta(NameValue(m)) if m.path == REMOTE => { if let Ok(path) = parse_lit_into_path(cx, REMOTE, &m.lit) { if is_primitive_path(&path, "Self") { remote.set(&m.path, item.ident.clone().into()); } else { remote.set(&m.path, path); } } } // Parse `#[serde(field_identifier)]` Meta(Path(word)) if word == FIELD_IDENTIFIER => { field_identifier.set_true(word); } // Parse `#[serde(variant_identifier)]` Meta(Path(word)) if word == VARIANT_IDENTIFIER => { variant_identifier.set_true(word); } // Parse `#[serde(crate = "foo")]` Meta(NameValue(m)) if m.path == CRATE => { if let Ok(path) = parse_lit_into_path(cx, CRATE, &m.lit) { serde_path.set(&m.path, path); } } // Parse `#[serde(expecting = "a message")]` Meta(NameValue(m)) if m.path == EXPECTING => { if let Ok(s) = get_lit_str(cx, EXPECTING, &m.lit) { expecting.set(&m.path, s.value()); } } Meta(meta_item) => { let path = meta_item .path() .into_token_stream() .to_string() .replace(' ', ""); cx.error_spanned_by( meta_item.path(), format!("unknown serde container attribute `{}`", path), ); } Lit(lit) => { cx.error_spanned_by(lit, "unexpected literal in serde container attribute"); } } } let mut is_packed = false; for attr in &item.attrs { if attr.path.is_ident("repr") { let _ = attr.parse_args_with(|input: ParseStream| { while let Some(token) = input.parse()? { if let TokenTree::Ident(ident) = token { is_packed |= ident == "packed"; } } Ok(()) }); } } Container { name: Name::from_attrs(unraw(&item.ident), ser_name, de_name, None), transparent: transparent.get(), deny_unknown_fields: deny_unknown_fields.get(), default: default.get().unwrap_or(Default::None), rename_all_rules: RenameAllRules { serialize: rename_all_ser_rule.get().unwrap_or(RenameRule::None), deserialize: rename_all_de_rule.get().unwrap_or(RenameRule::None), }, ser_bound: ser_bound.get(), de_bound: de_bound.get(), tag: decide_tag(cx, item, untagged, internal_tag, content), type_from: type_from.get(), type_try_from: type_try_from.get(), type_into: type_into.get(), remote: remote.get(), identifier: decide_identifier(cx, item, field_identifier, variant_identifier), has_flatten: false, serde_path: serde_path.get(), is_packed, expecting: expecting.get(), } } pub fn name(&self) -> &Name { &self.name } pub fn rename_all_rules(&self) -> &RenameAllRules { &self.rename_all_rules } pub fn transparent(&self) -> bool { self.transparent } pub fn deny_unknown_fields(&self) -> bool { self.deny_unknown_fields } pub fn default(&self) -> &Default { &self.default } pub fn ser_bound(&self) -> Option<&[syn::WherePredicate]> { self.ser_bound.as_ref().map(|vec| &vec[..]) } pub fn de_bound(&self) -> Option<&[syn::WherePredicate]> { self.de_bound.as_ref().map(|vec| &vec[..]) } pub fn tag(&self) -> &TagType { &self.tag } pub fn type_from(&self) -> Option<&syn::Type> { self.type_from.as_ref() } pub fn type_try_from(&self) -> Option<&syn::Type> { self.type_try_from.as_ref() } pub fn type_into(&self) -> Option<&syn::Type> { self.type_into.as_ref() } pub fn remote(&self) -> Option<&syn::Path> { self.remote.as_ref() } pub fn is_packed(&self) -> bool { self.is_packed } pub fn identifier(&self) -> Identifier { self.identifier } pub fn has_flatten(&self) -> bool { self.has_flatten } pub fn mark_has_flatten(&mut self) { self.has_flatten = true; } pub fn custom_serde_path(&self) -> Option<&syn::Path> { self.serde_path.as_ref() } pub fn serde_path(&self) -> Cow { self.custom_serde_path() .map_or_else(|| Cow::Owned(parse_quote!(_serde)), Cow::Borrowed) } /// Error message generated when type can't be deserialized. /// If `None`, default message will be used pub fn expecting(&self) -> Option<&str> { self.expecting.as_ref().map(String::as_ref) } } fn decide_tag( cx: &Ctxt, item: &syn::DeriveInput, untagged: BoolAttr, internal_tag: Attr, content: Attr, ) -> TagType { match ( untagged.0.get_with_tokens(), internal_tag.get_with_tokens(), content.get_with_tokens(), ) { (None, None, None) => TagType::External, (Some(_), None, None) => TagType::None, (None, Some((_, tag)), None) => { // Check that there are no tuple variants. if let syn::Data::Enum(data) = &item.data { for variant in &data.variants { match &variant.fields { syn::Fields::Named(_) | syn::Fields::Unit => {} syn::Fields::Unnamed(fields) => { if fields.unnamed.len() != 1 { cx.error_spanned_by( variant, "#[serde(tag = \"...\")] cannot be used with tuple variants", ); break; } } } } } TagType::Internal { tag } } (Some((untagged_tokens, _)), Some((tag_tokens, _)), None) => { cx.error_spanned_by( untagged_tokens, "enum cannot be both untagged and internally tagged", ); cx.error_spanned_by( tag_tokens, "enum cannot be both untagged and internally tagged", ); TagType::External // doesn't matter, will error } (None, None, Some((content_tokens, _))) => { cx.error_spanned_by( content_tokens, "#[serde(tag = \"...\", content = \"...\")] must be used together", ); TagType::External } (Some((untagged_tokens, _)), None, Some((content_tokens, _))) => { cx.error_spanned_by( untagged_tokens, "untagged enum cannot have #[serde(content = \"...\")]", ); cx.error_spanned_by( content_tokens, "untagged enum cannot have #[serde(content = \"...\")]", ); TagType::External } (None, Some((_, tag)), Some((_, content))) => TagType::Adjacent { tag, content }, (Some((untagged_tokens, _)), Some((tag_tokens, _)), Some((content_tokens, _))) => { cx.error_spanned_by( untagged_tokens, "untagged enum cannot have #[serde(tag = \"...\", content = \"...\")]", ); cx.error_spanned_by( tag_tokens, "untagged enum cannot have #[serde(tag = \"...\", content = \"...\")]", ); cx.error_spanned_by( content_tokens, "untagged enum cannot have #[serde(tag = \"...\", content = \"...\")]", ); TagType::External } } } fn decide_identifier( cx: &Ctxt, item: &syn::DeriveInput, field_identifier: BoolAttr, variant_identifier: BoolAttr, ) -> Identifier { match ( &item.data, field_identifier.0.get_with_tokens(), variant_identifier.0.get_with_tokens(), ) { (_, None, None) => Identifier::No, (_, Some((field_identifier_tokens, _)), Some((variant_identifier_tokens, _))) => { cx.error_spanned_by( field_identifier_tokens, "#[serde(field_identifier)] and #[serde(variant_identifier)] cannot both be set", ); cx.error_spanned_by( variant_identifier_tokens, "#[serde(field_identifier)] and #[serde(variant_identifier)] cannot both be set", ); Identifier::No } (syn::Data::Enum(_), Some(_), None) => Identifier::Field, (syn::Data::Enum(_), None, Some(_)) => Identifier::Variant, (syn::Data::Struct(syn::DataStruct { struct_token, .. }), Some(_), None) => { cx.error_spanned_by( struct_token, "#[serde(field_identifier)] can only be used on an enum", ); Identifier::No } (syn::Data::Union(syn::DataUnion { union_token, .. }), Some(_), None) => { cx.error_spanned_by( union_token, "#[serde(field_identifier)] can only be used on an enum", ); Identifier::No } (syn::Data::Struct(syn::DataStruct { struct_token, .. }), None, Some(_)) => { cx.error_spanned_by( struct_token, "#[serde(variant_identifier)] can only be used on an enum", ); Identifier::No } (syn::Data::Union(syn::DataUnion { union_token, .. }), None, Some(_)) => { cx.error_spanned_by( union_token, "#[serde(variant_identifier)] can only be used on an enum", ); Identifier::No } } } /// Represents variant attribute information pub struct Variant { name: Name, rename_all_rules: RenameAllRules, ser_bound: Option>, de_bound: Option>, skip_deserializing: bool, skip_serializing: bool, other: bool, serialize_with: Option, deserialize_with: Option, borrow: Option, } impl Variant { pub fn from_ast(cx: &Ctxt, variant: &syn::Variant) -> Self { let mut ser_name = Attr::none(cx, RENAME); let mut de_name = Attr::none(cx, RENAME); let mut de_aliases = VecAttr::none(cx, RENAME); let mut skip_deserializing = BoolAttr::none(cx, SKIP_DESERIALIZING); let mut skip_serializing = BoolAttr::none(cx, SKIP_SERIALIZING); let mut rename_all_ser_rule = Attr::none(cx, RENAME_ALL); let mut rename_all_de_rule = Attr::none(cx, RENAME_ALL); let mut ser_bound = Attr::none(cx, BOUND); let mut de_bound = Attr::none(cx, BOUND); let mut other = BoolAttr::none(cx, OTHER); let mut serialize_with = Attr::none(cx, SERIALIZE_WITH); let mut deserialize_with = Attr::none(cx, DESERIALIZE_WITH); let mut borrow = Attr::none(cx, BORROW); for meta_item in variant .attrs .iter() .flat_map(|attr| get_serde_meta_items(cx, attr)) .flatten() { match &meta_item { // Parse `#[serde(rename = "foo")]` Meta(NameValue(m)) if m.path == RENAME => { if let Ok(s) = get_lit_str(cx, RENAME, &m.lit) { ser_name.set(&m.path, s.value()); de_name.set_if_none(s.value()); de_aliases.insert(&m.path, s.value()); } } // Parse `#[serde(rename(serialize = "foo", deserialize = "bar"))]` Meta(List(m)) if m.path == RENAME => { if let Ok((ser, de)) = get_multiple_renames(cx, &m.nested) { ser_name.set_opt(&m.path, ser.map(syn::LitStr::value)); for de_value in de { de_name.set_if_none(de_value.value()); de_aliases.insert(&m.path, de_value.value()); } } } // Parse `#[serde(alias = "foo")]` Meta(NameValue(m)) if m.path == ALIAS => { if let Ok(s) = get_lit_str(cx, ALIAS, &m.lit) { de_aliases.insert(&m.path, s.value()); } } // Parse `#[serde(rename_all = "foo")]` Meta(NameValue(m)) if m.path == RENAME_ALL => { if let Ok(s) = get_lit_str(cx, RENAME_ALL, &m.lit) { match RenameRule::from_str(&s.value()) { Ok(rename_rule) => { rename_all_ser_rule.set(&m.path, rename_rule); rename_all_de_rule.set(&m.path, rename_rule); } Err(err) => cx.error_spanned_by(s, err), } } } // Parse `#[serde(rename_all(serialize = "foo", deserialize = "bar"))]` Meta(List(m)) if m.path == RENAME_ALL => { if let Ok((ser, de)) = get_renames(cx, &m.nested) { if let Some(ser) = ser { match RenameRule::from_str(&ser.value()) { Ok(rename_rule) => rename_all_ser_rule.set(&m.path, rename_rule), Err(err) => cx.error_spanned_by(ser, err), } } if let Some(de) = de { match RenameRule::from_str(&de.value()) { Ok(rename_rule) => rename_all_de_rule.set(&m.path, rename_rule), Err(err) => cx.error_spanned_by(de, err), } } } } // Parse `#[serde(skip)]` Meta(Path(word)) if word == SKIP => { skip_serializing.set_true(word); skip_deserializing.set_true(word); } // Parse `#[serde(skip_deserializing)]` Meta(Path(word)) if word == SKIP_DESERIALIZING => { skip_deserializing.set_true(word); } // Parse `#[serde(skip_serializing)]` Meta(Path(word)) if word == SKIP_SERIALIZING => { skip_serializing.set_true(word); } // Parse `#[serde(other)]` Meta(Path(word)) if word == OTHER => { other.set_true(word); } // Parse `#[serde(bound = "T: SomeBound")]` Meta(NameValue(m)) if m.path == BOUND => { if let Ok(where_predicates) = parse_lit_into_where(cx, BOUND, BOUND, &m.lit) { ser_bound.set(&m.path, where_predicates.clone()); de_bound.set(&m.path, where_predicates); } } // Parse `#[serde(bound(serialize = "...", deserialize = "..."))]` Meta(List(m)) if m.path == BOUND => { if let Ok((ser, de)) = get_where_predicates(cx, &m.nested) { ser_bound.set_opt(&m.path, ser); de_bound.set_opt(&m.path, de); } } // Parse `#[serde(with = "...")]` Meta(NameValue(m)) if m.path == WITH => { if let Ok(path) = parse_lit_into_expr_path(cx, WITH, &m.lit) { let mut ser_path = path.clone(); ser_path .path .segments .push(Ident::new("serialize", Span::call_site()).into()); serialize_with.set(&m.path, ser_path); let mut de_path = path; de_path .path .segments .push(Ident::new("deserialize", Span::call_site()).into()); deserialize_with.set(&m.path, de_path); } } // Parse `#[serde(serialize_with = "...")]` Meta(NameValue(m)) if m.path == SERIALIZE_WITH => { if let Ok(path) = parse_lit_into_expr_path(cx, SERIALIZE_WITH, &m.lit) { serialize_with.set(&m.path, path); } } // Parse `#[serde(deserialize_with = "...")]` Meta(NameValue(m)) if m.path == DESERIALIZE_WITH => { if let Ok(path) = parse_lit_into_expr_path(cx, DESERIALIZE_WITH, &m.lit) { deserialize_with.set(&m.path, path); } } // Defer `#[serde(borrow)]` and `#[serde(borrow = "'a + 'b")]` Meta(m) if m.path() == BORROW => match &variant.fields { syn::Fields::Unnamed(fields) if fields.unnamed.len() == 1 => { borrow.set(m.path(), m.clone()); } _ => { cx.error_spanned_by( variant, "#[serde(borrow)] may only be used on newtype variants", ); } }, Meta(meta_item) => { let path = meta_item .path() .into_token_stream() .to_string() .replace(' ', ""); cx.error_spanned_by( meta_item.path(), format!("unknown serde variant attribute `{}`", path), ); } Lit(lit) => { cx.error_spanned_by(lit, "unexpected literal in serde variant attribute"); } } } Variant { name: Name::from_attrs(unraw(&variant.ident), ser_name, de_name, Some(de_aliases)), rename_all_rules: RenameAllRules { serialize: rename_all_ser_rule.get().unwrap_or(RenameRule::None), deserialize: rename_all_de_rule.get().unwrap_or(RenameRule::None), }, ser_bound: ser_bound.get(), de_bound: de_bound.get(), skip_deserializing: skip_deserializing.get(), skip_serializing: skip_serializing.get(), other: other.get(), serialize_with: serialize_with.get(), deserialize_with: deserialize_with.get(), borrow: borrow.get(), } } pub fn name(&self) -> &Name { &self.name } pub fn aliases(&self) -> Vec { self.name.deserialize_aliases() } pub fn rename_by_rules(&mut self, rules: &RenameAllRules) { if !self.name.serialize_renamed { self.name.serialize = rules.serialize.apply_to_variant(&self.name.serialize); } if !self.name.deserialize_renamed { self.name.deserialize = rules.deserialize.apply_to_variant(&self.name.deserialize); } } pub fn rename_all_rules(&self) -> &RenameAllRules { &self.rename_all_rules } pub fn ser_bound(&self) -> Option<&[syn::WherePredicate]> { self.ser_bound.as_ref().map(|vec| &vec[..]) } pub fn de_bound(&self) -> Option<&[syn::WherePredicate]> { self.de_bound.as_ref().map(|vec| &vec[..]) } pub fn skip_deserializing(&self) -> bool { self.skip_deserializing } pub fn skip_serializing(&self) -> bool { self.skip_serializing } pub fn other(&self) -> bool { self.other } pub fn serialize_with(&self) -> Option<&syn::ExprPath> { self.serialize_with.as_ref() } pub fn deserialize_with(&self) -> Option<&syn::ExprPath> { self.deserialize_with.as_ref() } } /// Represents field attribute information pub struct Field { name: Name, skip_serializing: bool, skip_deserializing: bool, skip_serializing_if: Option, default: Default, serialize_with: Option, deserialize_with: Option, ser_bound: Option>, de_bound: Option>, borrowed_lifetimes: BTreeSet, getter: Option, flatten: bool, transparent: bool, } /// Represents the default to use for a field when deserializing. pub enum Default { /// Field must always be specified because it does not have a default. None, /// The default is given by `std::default::Default::default()`. Default, /// The default is given by this function. Path(syn::ExprPath), } impl Default { pub fn is_none(&self) -> bool { match self { Default::None => true, Default::Default | Default::Path(_) => false, } } } impl Field { /// Extract out the `#[serde(...)]` attributes from a struct field. pub fn from_ast( cx: &Ctxt, index: usize, field: &syn::Field, attrs: Option<&Variant>, container_default: &Default, ) -> Self { let mut ser_name = Attr::none(cx, RENAME); let mut de_name = Attr::none(cx, RENAME); let mut de_aliases = VecAttr::none(cx, RENAME); let mut skip_serializing = BoolAttr::none(cx, SKIP_SERIALIZING); let mut skip_deserializing = BoolAttr::none(cx, SKIP_DESERIALIZING); let mut skip_serializing_if = Attr::none(cx, SKIP_SERIALIZING_IF); let mut default = Attr::none(cx, DEFAULT); let mut serialize_with = Attr::none(cx, SERIALIZE_WITH); let mut deserialize_with = Attr::none(cx, DESERIALIZE_WITH); let mut ser_bound = Attr::none(cx, BOUND); let mut de_bound = Attr::none(cx, BOUND); let mut borrowed_lifetimes = Attr::none(cx, BORROW); let mut getter = Attr::none(cx, GETTER); let mut flatten = BoolAttr::none(cx, FLATTEN); let ident = match &field.ident { Some(ident) => unraw(ident), None => index.to_string(), }; let variant_borrow = attrs .and_then(|variant| variant.borrow.as_ref()) .map(|borrow| Meta(borrow.clone())); for meta_item in field .attrs .iter() .flat_map(|attr| get_serde_meta_items(cx, attr)) .flatten() .chain(variant_borrow) { match &meta_item { // Parse `#[serde(rename = "foo")]` Meta(NameValue(m)) if m.path == RENAME => { if let Ok(s) = get_lit_str(cx, RENAME, &m.lit) { ser_name.set(&m.path, s.value()); de_name.set_if_none(s.value()); de_aliases.insert(&m.path, s.value()); } } // Parse `#[serde(rename(serialize = "foo", deserialize = "bar"))]` Meta(List(m)) if m.path == RENAME => { if let Ok((ser, de)) = get_multiple_renames(cx, &m.nested) { ser_name.set_opt(&m.path, ser.map(syn::LitStr::value)); for de_value in de { de_name.set_if_none(de_value.value()); de_aliases.insert(&m.path, de_value.value()); } } } // Parse `#[serde(alias = "foo")]` Meta(NameValue(m)) if m.path == ALIAS => { if let Ok(s) = get_lit_str(cx, ALIAS, &m.lit) { de_aliases.insert(&m.path, s.value()); } } // Parse `#[serde(default)]` Meta(Path(word)) if word == DEFAULT => { default.set(word, Default::Default); } // Parse `#[serde(default = "...")]` Meta(NameValue(m)) if m.path == DEFAULT => { if let Ok(path) = parse_lit_into_expr_path(cx, DEFAULT, &m.lit) { default.set(&m.path, Default::Path(path)); } } // Parse `#[serde(skip_serializing)]` Meta(Path(word)) if word == SKIP_SERIALIZING => { skip_serializing.set_true(word); } // Parse `#[serde(skip_deserializing)]` Meta(Path(word)) if word == SKIP_DESERIALIZING => { skip_deserializing.set_true(word); } // Parse `#[serde(skip)]` Meta(Path(word)) if word == SKIP => { skip_serializing.set_true(word); skip_deserializing.set_true(word); } // Parse `#[serde(skip_serializing_if = "...")]` Meta(NameValue(m)) if m.path == SKIP_SERIALIZING_IF => { if let Ok(path) = parse_lit_into_expr_path(cx, SKIP_SERIALIZING_IF, &m.lit) { skip_serializing_if.set(&m.path, path); } } // Parse `#[serde(serialize_with = "...")]` Meta(NameValue(m)) if m.path == SERIALIZE_WITH => { if let Ok(path) = parse_lit_into_expr_path(cx, SERIALIZE_WITH, &m.lit) { serialize_with.set(&m.path, path); } } // Parse `#[serde(deserialize_with = "...")]` Meta(NameValue(m)) if m.path == DESERIALIZE_WITH => { if let Ok(path) = parse_lit_into_expr_path(cx, DESERIALIZE_WITH, &m.lit) { deserialize_with.set(&m.path, path); } } // Parse `#[serde(with = "...")]` Meta(NameValue(m)) if m.path == WITH => { if let Ok(path) = parse_lit_into_expr_path(cx, WITH, &m.lit) { let mut ser_path = path.clone(); ser_path .path .segments .push(Ident::new("serialize", Span::call_site()).into()); serialize_with.set(&m.path, ser_path); let mut de_path = path; de_path .path .segments .push(Ident::new("deserialize", Span::call_site()).into()); deserialize_with.set(&m.path, de_path); } } // Parse `#[serde(bound = "T: SomeBound")]` Meta(NameValue(m)) if m.path == BOUND => { if let Ok(where_predicates) = parse_lit_into_where(cx, BOUND, BOUND, &m.lit) { ser_bound.set(&m.path, where_predicates.clone()); de_bound.set(&m.path, where_predicates); } } // Parse `#[serde(bound(serialize = "...", deserialize = "..."))]` Meta(List(m)) if m.path == BOUND => { if let Ok((ser, de)) = get_where_predicates(cx, &m.nested) { ser_bound.set_opt(&m.path, ser); de_bound.set_opt(&m.path, de); } } // Parse `#[serde(borrow)]` Meta(Path(word)) if word == BORROW => { if let Ok(borrowable) = borrowable_lifetimes(cx, &ident, field) { borrowed_lifetimes.set(word, borrowable); } } // Parse `#[serde(borrow = "'a + 'b")]` Meta(NameValue(m)) if m.path == BORROW => { if let Ok(lifetimes) = parse_lit_into_lifetimes(cx, BORROW, &m.lit) { if let Ok(borrowable) = borrowable_lifetimes(cx, &ident, field) { for lifetime in &lifetimes { if !borrowable.contains(lifetime) { cx.error_spanned_by( field, format!( "field `{}` does not have lifetime {}", ident, lifetime ), ); } } borrowed_lifetimes.set(&m.path, lifetimes); } } } // Parse `#[serde(getter = "...")]` Meta(NameValue(m)) if m.path == GETTER => { if let Ok(path) = parse_lit_into_expr_path(cx, GETTER, &m.lit) { getter.set(&m.path, path); } } // Parse `#[serde(flatten)]` Meta(Path(word)) if word == FLATTEN => { flatten.set_true(word); } Meta(meta_item) => { let path = meta_item .path() .into_token_stream() .to_string() .replace(' ', ""); cx.error_spanned_by( meta_item.path(), format!("unknown serde field attribute `{}`", path), ); } Lit(lit) => { cx.error_spanned_by(lit, "unexpected literal in serde field attribute"); } } } // Is skip_deserializing, initialize the field to Default::default() unless a // different default is specified by `#[serde(default = "...")]` on // ourselves or our container (e.g. the struct we are in). if let Default::None = *container_default { if skip_deserializing.0.value.is_some() { default.set_if_none(Default::Default); } } let mut borrowed_lifetimes = borrowed_lifetimes.get().unwrap_or_default(); if !borrowed_lifetimes.is_empty() { // Cow and Cow<[u8]> never borrow by default: // // impl<'de, 'a, T: ?Sized> Deserialize<'de> for Cow<'a, T> // // A #[serde(borrow)] attribute enables borrowing that corresponds // roughly to these impls: // // impl<'de: 'a, 'a> Deserialize<'de> for Cow<'a, str> // impl<'de: 'a, 'a> Deserialize<'de> for Cow<'a, [u8]> if is_cow(&field.ty, is_str) { let mut path = syn::Path { leading_colon: None, segments: Punctuated::new(), }; let span = Span::call_site(); path.segments.push(Ident::new("_serde", span).into()); path.segments.push(Ident::new("__private", span).into()); path.segments.push(Ident::new("de", span).into()); path.segments .push(Ident::new("borrow_cow_str", span).into()); let expr = syn::ExprPath { attrs: Vec::new(), qself: None, path, }; deserialize_with.set_if_none(expr); } else if is_cow(&field.ty, is_slice_u8) { let mut path = syn::Path { leading_colon: None, segments: Punctuated::new(), }; let span = Span::call_site(); path.segments.push(Ident::new("_serde", span).into()); path.segments.push(Ident::new("__private", span).into()); path.segments.push(Ident::new("de", span).into()); path.segments .push(Ident::new("borrow_cow_bytes", span).into()); let expr = syn::ExprPath { attrs: Vec::new(), qself: None, path, }; deserialize_with.set_if_none(expr); } } else if is_implicitly_borrowed(&field.ty) { // Types &str and &[u8] are always implicitly borrowed. No need for // a #[serde(borrow)]. collect_lifetimes(&field.ty, &mut borrowed_lifetimes); } Field { name: Name::from_attrs(ident, ser_name, de_name, Some(de_aliases)), skip_serializing: skip_serializing.get(), skip_deserializing: skip_deserializing.get(), skip_serializing_if: skip_serializing_if.get(), default: default.get().unwrap_or(Default::None), serialize_with: serialize_with.get(), deserialize_with: deserialize_with.get(), ser_bound: ser_bound.get(), de_bound: de_bound.get(), borrowed_lifetimes, getter: getter.get(), flatten: flatten.get(), transparent: false, } } pub fn name(&self) -> &Name { &self.name } pub fn aliases(&self) -> Vec { self.name.deserialize_aliases() } pub fn rename_by_rules(&mut self, rules: &RenameAllRules) { if !self.name.serialize_renamed { self.name.serialize = rules.serialize.apply_to_field(&self.name.serialize); } if !self.name.deserialize_renamed { self.name.deserialize = rules.deserialize.apply_to_field(&self.name.deserialize); } } pub fn skip_serializing(&self) -> bool { self.skip_serializing } pub fn skip_deserializing(&self) -> bool { self.skip_deserializing } pub fn skip_serializing_if(&self) -> Option<&syn::ExprPath> { self.skip_serializing_if.as_ref() } pub fn default(&self) -> &Default { &self.default } pub fn serialize_with(&self) -> Option<&syn::ExprPath> { self.serialize_with.as_ref() } pub fn deserialize_with(&self) -> Option<&syn::ExprPath> { self.deserialize_with.as_ref() } pub fn ser_bound(&self) -> Option<&[syn::WherePredicate]> { self.ser_bound.as_ref().map(|vec| &vec[..]) } pub fn de_bound(&self) -> Option<&[syn::WherePredicate]> { self.de_bound.as_ref().map(|vec| &vec[..]) } pub fn borrowed_lifetimes(&self) -> &BTreeSet { &self.borrowed_lifetimes } pub fn getter(&self) -> Option<&syn::ExprPath> { self.getter.as_ref() } pub fn flatten(&self) -> bool { self.flatten } pub fn transparent(&self) -> bool { self.transparent } pub fn mark_transparent(&mut self) { self.transparent = true; } } type SerAndDe = (Option, Option); fn get_ser_and_de<'a, 'b, T, F>( cx: &'b Ctxt, attr_name: Symbol, metas: &'a Punctuated, f: F, ) -> Result<(VecAttr<'b, T>, VecAttr<'b, T>), ()> where T: 'a, F: Fn(&Ctxt, Symbol, Symbol, &'a syn::Lit) -> Result, { let mut ser_meta = VecAttr::none(cx, attr_name); let mut de_meta = VecAttr::none(cx, attr_name); for meta in metas { match meta { Meta(NameValue(meta)) if meta.path == SERIALIZE => { if let Ok(v) = f(cx, attr_name, SERIALIZE, &meta.lit) { ser_meta.insert(&meta.path, v); } } Meta(NameValue(meta)) if meta.path == DESERIALIZE => { if let Ok(v) = f(cx, attr_name, DESERIALIZE, &meta.lit) { de_meta.insert(&meta.path, v); } } _ => { cx.error_spanned_by( meta, format!( "malformed {0} attribute, expected `{0}(serialize = ..., deserialize = ...)`", attr_name ), ); return Err(()); } } } Ok((ser_meta, de_meta)) } fn get_renames<'a>( cx: &Ctxt, items: &'a Punctuated, ) -> Result, ()> { let (ser, de) = get_ser_and_de(cx, RENAME, items, get_lit_str2)?; Ok((ser.at_most_one()?, de.at_most_one()?)) } fn get_multiple_renames<'a>( cx: &Ctxt, items: &'a Punctuated, ) -> Result<(Option<&'a syn::LitStr>, Vec<&'a syn::LitStr>), ()> { let (ser, de) = get_ser_and_de(cx, RENAME, items, get_lit_str2)?; Ok((ser.at_most_one()?, de.get())) } fn get_where_predicates( cx: &Ctxt, items: &Punctuated, ) -> Result>, ()> { let (ser, de) = get_ser_and_de(cx, BOUND, items, parse_lit_into_where)?; Ok((ser.at_most_one()?, de.at_most_one()?)) } pub fn get_serde_meta_items(cx: &Ctxt, attr: &syn::Attribute) -> Result, ()> { if attr.path != SERDE { return Ok(Vec::new()); } match attr.parse_meta() { Ok(List(meta)) => Ok(meta.nested.into_iter().collect()), Ok(other) => { cx.error_spanned_by(other, "expected #[serde(...)]"); Err(()) } Err(err) => { cx.syn_error(err); Err(()) } } } fn get_lit_str<'a>(cx: &Ctxt, attr_name: Symbol, lit: &'a syn::Lit) -> Result<&'a syn::LitStr, ()> { get_lit_str2(cx, attr_name, attr_name, lit) } fn get_lit_str2<'a>( cx: &Ctxt, attr_name: Symbol, meta_item_name: Symbol, lit: &'a syn::Lit, ) -> Result<&'a syn::LitStr, ()> { if let syn::Lit::Str(lit) = lit { Ok(lit) } else { cx.error_spanned_by( lit, format!( "expected serde {} attribute to be a string: `{} = \"...\"`", attr_name, meta_item_name ), ); Err(()) } } fn parse_lit_into_path(cx: &Ctxt, attr_name: Symbol, lit: &syn::Lit) -> Result { let string = get_lit_str(cx, attr_name, lit)?; parse_lit_str(string).map_err(|_| { cx.error_spanned_by(lit, format!("failed to parse path: {:?}", string.value())); }) } fn parse_lit_into_expr_path( cx: &Ctxt, attr_name: Symbol, lit: &syn::Lit, ) -> Result { let string = get_lit_str(cx, attr_name, lit)?; parse_lit_str(string).map_err(|_| { cx.error_spanned_by(lit, format!("failed to parse path: {:?}", string.value())); }) } fn parse_lit_into_where( cx: &Ctxt, attr_name: Symbol, meta_item_name: Symbol, lit: &syn::Lit, ) -> Result, ()> { let string = get_lit_str2(cx, attr_name, meta_item_name, lit)?; if string.value().is_empty() { return Ok(Vec::new()); } let where_string = syn::LitStr::new(&format!("where {}", string.value()), string.span()); parse_lit_str::(&where_string) .map(|wh| wh.predicates.into_iter().collect()) .map_err(|err| cx.error_spanned_by(lit, err)) } fn parse_lit_into_ty(cx: &Ctxt, attr_name: Symbol, lit: &syn::Lit) -> Result { let string = get_lit_str(cx, attr_name, lit)?; parse_lit_str(string).map_err(|_| { cx.error_spanned_by( lit, format!("failed to parse type: {} = {:?}", attr_name, string.value()), ); }) } // Parses a string literal like "'a + 'b + 'c" containing a nonempty list of // lifetimes separated by `+`. fn parse_lit_into_lifetimes( cx: &Ctxt, attr_name: Symbol, lit: &syn::Lit, ) -> Result, ()> { let string = get_lit_str(cx, attr_name, lit)?; if string.value().is_empty() { cx.error_spanned_by(lit, "at least one lifetime must be borrowed"); return Err(()); } struct BorrowedLifetimes(Punctuated); impl Parse for BorrowedLifetimes { fn parse(input: ParseStream) -> parse::Result { Punctuated::parse_separated_nonempty(input).map(BorrowedLifetimes) } } if let Ok(BorrowedLifetimes(lifetimes)) = parse_lit_str(string) { let mut set = BTreeSet::new(); for lifetime in lifetimes { if !set.insert(lifetime.clone()) { cx.error_spanned_by(lit, format!("duplicate borrowed lifetime `{}`", lifetime)); } } return Ok(set); } cx.error_spanned_by( lit, format!("failed to parse borrowed lifetimes: {:?}", string.value()), ); Err(()) } fn is_implicitly_borrowed(ty: &syn::Type) -> bool { is_implicitly_borrowed_reference(ty) || is_option(ty, is_implicitly_borrowed_reference) } fn is_implicitly_borrowed_reference(ty: &syn::Type) -> bool { is_reference(ty, is_str) || is_reference(ty, is_slice_u8) } // Whether the type looks like it might be `std::borrow::Cow` where elem="T". // This can have false negatives and false positives. // // False negative: // // use std::borrow::Cow as Pig; // // #[derive(Deserialize)] // struct S<'a> { // #[serde(borrow)] // pig: Pig<'a, str>, // } // // False positive: // // type str = [i16]; // // #[derive(Deserialize)] // struct S<'a> { // #[serde(borrow)] // cow: Cow<'a, str>, // } fn is_cow(ty: &syn::Type, elem: fn(&syn::Type) -> bool) -> bool { let path = match ungroup(ty) { syn::Type::Path(ty) => &ty.path, _ => { return false; } }; let seg = match path.segments.last() { Some(seg) => seg, None => { return false; } }; let args = match &seg.arguments { syn::PathArguments::AngleBracketed(bracketed) => &bracketed.args, _ => { return false; } }; seg.ident == "Cow" && args.len() == 2 && match (&args[0], &args[1]) { (syn::GenericArgument::Lifetime(_), syn::GenericArgument::Type(arg)) => elem(arg), _ => false, } } fn is_option(ty: &syn::Type, elem: fn(&syn::Type) -> bool) -> bool { let path = match ungroup(ty) { syn::Type::Path(ty) => &ty.path, _ => { return false; } }; let seg = match path.segments.last() { Some(seg) => seg, None => { return false; } }; let args = match &seg.arguments { syn::PathArguments::AngleBracketed(bracketed) => &bracketed.args, _ => { return false; } }; seg.ident == "Option" && args.len() == 1 && match &args[0] { syn::GenericArgument::Type(arg) => elem(arg), _ => false, } } // Whether the type looks like it might be `&T` where elem="T". This can have // false negatives and false positives. // // False negative: // // type Yarn = str; // // #[derive(Deserialize)] // struct S<'a> { // r: &'a Yarn, // } // // False positive: // // type str = [i16]; // // #[derive(Deserialize)] // struct S<'a> { // r: &'a str, // } fn is_reference(ty: &syn::Type, elem: fn(&syn::Type) -> bool) -> bool { match ungroup(ty) { syn::Type::Reference(ty) => ty.mutability.is_none() && elem(&ty.elem), _ => false, } } fn is_str(ty: &syn::Type) -> bool { is_primitive_type(ty, "str") } fn is_slice_u8(ty: &syn::Type) -> bool { match ungroup(ty) { syn::Type::Slice(ty) => is_primitive_type(&ty.elem, "u8"), _ => false, } } fn is_primitive_type(ty: &syn::Type, primitive: &str) -> bool { match ungroup(ty) { syn::Type::Path(ty) => ty.qself.is_none() && is_primitive_path(&ty.path, primitive), _ => false, } } fn is_primitive_path(path: &syn::Path, primitive: &str) -> bool { path.leading_colon.is_none() && path.segments.len() == 1 && path.segments[0].ident == primitive && path.segments[0].arguments.is_empty() } // All lifetimes that this type could borrow from a Deserializer. // // For example a type `S<'a, 'b>` could borrow `'a` and `'b`. On the other hand // a type `for<'a> fn(&'a str)` could not borrow `'a` from the Deserializer. // // This is used when there is an explicit or implicit `#[serde(borrow)]` // attribute on the field so there must be at least one borrowable lifetime. fn borrowable_lifetimes( cx: &Ctxt, name: &str, field: &syn::Field, ) -> Result, ()> { let mut lifetimes = BTreeSet::new(); collect_lifetimes(&field.ty, &mut lifetimes); if lifetimes.is_empty() { cx.error_spanned_by( field, format!("field `{}` has no lifetimes to borrow", name), ); Err(()) } else { Ok(lifetimes) } } fn collect_lifetimes(ty: &syn::Type, out: &mut BTreeSet) { match ty { syn::Type::Slice(ty) => { collect_lifetimes(&ty.elem, out); } syn::Type::Array(ty) => { collect_lifetimes(&ty.elem, out); } syn::Type::Ptr(ty) => { collect_lifetimes(&ty.elem, out); } syn::Type::Reference(ty) => { out.extend(ty.lifetime.iter().cloned()); collect_lifetimes(&ty.elem, out); } syn::Type::Tuple(ty) => { for elem in &ty.elems { collect_lifetimes(elem, out); } } syn::Type::Path(ty) => { if let Some(qself) = &ty.qself { collect_lifetimes(&qself.ty, out); } for seg in &ty.path.segments { if let syn::PathArguments::AngleBracketed(bracketed) = &seg.arguments { for arg in &bracketed.args { match arg { syn::GenericArgument::Lifetime(lifetime) => { out.insert(lifetime.clone()); } syn::GenericArgument::Type(ty) => { collect_lifetimes(ty, out); } syn::GenericArgument::Binding(binding) => { collect_lifetimes(&binding.ty, out); } syn::GenericArgument::Constraint(_) | syn::GenericArgument::Const(_) => {} } } } } } syn::Type::Paren(ty) => { collect_lifetimes(&ty.elem, out); } syn::Type::Group(ty) => { collect_lifetimes(&ty.elem, out); } syn::Type::Macro(ty) => { collect_lifetimes_from_tokens(ty.mac.tokens.clone(), out); } syn::Type::BareFn(_) | syn::Type::Never(_) | syn::Type::TraitObject(_) | syn::Type::ImplTrait(_) | syn::Type::Infer(_) | syn::Type::Verbatim(_) => {} #[cfg_attr(all(test, exhaustive), deny(non_exhaustive_omitted_patterns))] _ => {} } } fn collect_lifetimes_from_tokens(tokens: TokenStream, out: &mut BTreeSet) { let mut iter = tokens.into_iter(); while let Some(tt) = iter.next() { match &tt { TokenTree::Punct(op) if op.as_char() == '\'' && op.spacing() == Spacing::Joint => { if let Some(TokenTree::Ident(ident)) = iter.next() { out.insert(syn::Lifetime { apostrophe: op.span(), ident, }); } } TokenTree::Group(group) => { let tokens = group.stream(); collect_lifetimes_from_tokens(tokens, out); } _ => {} } } } fn parse_lit_str(s: &syn::LitStr) -> parse::Result where T: Parse, { let tokens = spanned_tokens(s)?; syn::parse2(tokens) } fn spanned_tokens(s: &syn::LitStr) -> parse::Result { let stream = syn::parse_str(&s.value())?; Ok(respan(stream, s.span())) }