//! A YAML mapping and its iterator types. use crate::Value; use indexmap::IndexMap; use serde::{Deserialize, Deserializer, Serialize}; use std::cmp::Ordering; use std::collections::hash_map::DefaultHasher; use std::fmt; use std::hash::{Hash, Hasher}; use std::iter::FromIterator; use std::ops::{Index, IndexMut}; /// A YAML mapping in which the keys and values are both `serde_yaml::Value`. #[derive(Clone, Debug, Default, Eq, PartialEq)] pub struct Mapping { map: IndexMap, } impl Mapping { /// Creates an empty YAML map. #[inline] pub fn new() -> Self { Self::default() } /// Creates an empty YAML map with the given initial capacity. #[inline] pub fn with_capacity(capacity: usize) -> Self { Mapping { map: IndexMap::with_capacity(capacity), } } /// Reserves capacity for at least `additional` more elements to be inserted /// into the map. The map may reserve more space to avoid frequent /// allocations. /// /// # Panics /// /// Panics if the new allocation size overflows `usize`. #[inline] pub fn reserve(&mut self, additional: usize) { self.map.reserve(additional); } /// Shrinks the capacity of the map as much as possible. It will drop down /// as much as possible while maintaining the internal rules and possibly /// leaving some space in accordance with the resize policy. #[inline] pub fn shrink_to_fit(&mut self) { self.map.shrink_to_fit(); } /// Inserts a key-value pair into the map. If the key already existed, the /// old value is returned. #[inline] pub fn insert(&mut self, k: Value, v: Value) -> Option { self.map.insert(k, v) } /// Checks if the map contains the given key. #[inline] pub fn contains_key(&self, k: &Value) -> bool { self.map.contains_key(k) } /// Returns the value corresponding to the key in the map. #[inline] pub fn get(&self, k: &Value) -> Option<&Value> { self.map.get(k) } /// Returns the mutable reference corresponding to the key in the map. #[inline] pub fn get_mut(&mut self, k: &Value) -> Option<&mut Value> { self.map.get_mut(k) } /// Gets the given key’s corresponding entry in the map for insertion and/or /// in-place manipulation. #[inline] pub fn entry(&mut self, k: Value) -> Entry { match self.map.entry(k) { indexmap::map::Entry::Occupied(occupied) => Entry::Occupied(OccupiedEntry { occupied }), indexmap::map::Entry::Vacant(vacant) => Entry::Vacant(VacantEntry { vacant }), } } /// Removes and returns the value corresponding to the key from the map. #[inline] pub fn remove(&mut self, k: &Value) -> Option { self.map.remove(k) } /// Returns the maximum number of key-value pairs the map can hold without /// reallocating. #[inline] pub fn capacity(&self) -> usize { self.map.capacity() } /// Returns the number of key-value pairs in the map. #[inline] pub fn len(&self) -> usize { self.map.len() } /// Returns whether the map is currently empty. #[inline] pub fn is_empty(&self) -> bool { self.map.is_empty() } /// Clears the map of all key-value pairs. #[inline] pub fn clear(&mut self) { self.map.clear(); } /// Returns a double-ended iterator visiting all key-value pairs in order of /// insertion. Iterator element type is `(&'a Value, &'a Value)`. #[inline] pub fn iter(&self) -> Iter { Iter { iter: self.map.iter(), } } /// Returns a double-ended iterator visiting all key-value pairs in order of /// insertion. Iterator element type is `(&'a Value, &'a mut ValuE)`. #[inline] pub fn iter_mut(&mut self) -> IterMut { IterMut { iter: self.map.iter_mut(), } } } #[allow(clippy::derive_hash_xor_eq)] impl Hash for Mapping { fn hash(&self, state: &mut H) { // Hash the kv pairs in a way that is not sensitive to their order. let mut xor = 0; for (k, v) in self { let mut hasher = DefaultHasher::new(); k.hash(&mut hasher); v.hash(&mut hasher); xor ^= hasher.finish(); } xor.hash(state); } } impl PartialOrd for Mapping { fn partial_cmp(&self, other: &Self) -> Option { let mut self_entries = Vec::from_iter(self); let mut other_entries = Vec::from_iter(other); // Sort in an arbitrary order that is consistent with Value's PartialOrd // impl. fn total_cmp(a: &Value, b: &Value) -> Ordering { match (a, b) { (Value::Null, Value::Null) => Ordering::Equal, (Value::Null, _) => Ordering::Less, (_, Value::Null) => Ordering::Greater, (Value::Bool(a), Value::Bool(b)) => a.cmp(b), (Value::Bool(_), _) => Ordering::Less, (_, Value::Bool(_)) => Ordering::Greater, (Value::Number(a), Value::Number(b)) => a.total_cmp(b), (Value::Number(_), _) => Ordering::Less, (_, Value::Number(_)) => Ordering::Greater, (Value::String(a), Value::String(b)) => a.cmp(b), (Value::String(_), _) => Ordering::Less, (_, Value::String(_)) => Ordering::Greater, (Value::Sequence(a), Value::Sequence(b)) => iter_cmp_by(a, b, total_cmp), (Value::Sequence(_), _) => Ordering::Less, (_, Value::Sequence(_)) => Ordering::Greater, (Value::Mapping(a), Value::Mapping(b)) => { iter_cmp_by(a, b, |(ak, av), (bk, bv)| { total_cmp(ak, bk).then_with(|| total_cmp(av, bv)) }) } } } fn iter_cmp_by(this: I, other: I, mut cmp: F) -> Ordering where I: IntoIterator, F: FnMut(I::Item, I::Item) -> Ordering, { let mut this = this.into_iter(); let mut other = other.into_iter(); loop { let x = match this.next() { None => { if other.next().is_none() { return Ordering::Equal; } else { return Ordering::Less; } } Some(val) => val, }; let y = match other.next() { None => return Ordering::Greater, Some(val) => val, }; match cmp(x, y) { Ordering::Equal => {} non_eq => return non_eq, } } } // While sorting by map key, we get to assume that no two keys are // equal, otherwise they wouldn't both be in the map. This is not a safe // assumption outside of this situation. let total_cmp = |&(a, _): &_, &(b, _): &_| total_cmp(a, b); self_entries.sort_by(total_cmp); other_entries.sort_by(total_cmp); self_entries.partial_cmp(&other_entries) } } impl<'a> Index<&'a Value> for Mapping { type Output = Value; #[inline] fn index(&self, index: &'a Value) -> &Value { self.map.index(index) } } impl<'a> IndexMut<&'a Value> for Mapping { #[inline] fn index_mut(&mut self, index: &'a Value) -> &mut Value { self.map.index_mut(index) } } impl Extend<(Value, Value)> for Mapping { #[inline] fn extend>(&mut self, iter: I) { self.map.extend(iter); } } impl FromIterator<(Value, Value)> for Mapping { #[inline] fn from_iter>(iter: I) -> Self { Mapping { map: IndexMap::from_iter(iter), } } } macro_rules! delegate_iterator { (($name:ident $($generics:tt)*) => $item:ty) => { impl $($generics)* Iterator for $name $($generics)* { type Item = $item; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl $($generics)* ExactSizeIterator for $name $($generics)* { #[inline] fn len(&self) -> usize { self.iter.len() } } } } /// Iterator over `&serde_yaml::Mapping`. pub struct Iter<'a> { iter: indexmap::map::Iter<'a, Value, Value>, } delegate_iterator!((Iter<'a>) => (&'a Value, &'a Value)); impl<'a> IntoIterator for &'a Mapping { type Item = (&'a Value, &'a Value); type IntoIter = Iter<'a>; #[inline] fn into_iter(self) -> Self::IntoIter { Iter { iter: self.map.iter(), } } } /// Iterator over `&mut serde_yaml::Mapping`. pub struct IterMut<'a> { iter: indexmap::map::IterMut<'a, Value, Value>, } delegate_iterator!((IterMut<'a>) => (&'a Value, &'a mut Value)); impl<'a> IntoIterator for &'a mut Mapping { type Item = (&'a Value, &'a mut Value); type IntoIter = IterMut<'a>; #[inline] fn into_iter(self) -> Self::IntoIter { IterMut { iter: self.map.iter_mut(), } } } /// Iterator over `serde_yaml::Mapping` by value. pub struct IntoIter { iter: indexmap::map::IntoIter, } delegate_iterator!((IntoIter) => (Value, Value)); impl IntoIterator for Mapping { type Item = (Value, Value); type IntoIter = IntoIter; #[inline] fn into_iter(self) -> Self::IntoIter { IntoIter { iter: self.map.into_iter(), } } } /// Entry for an existing key-value pair or a vacant location to insert one. pub enum Entry<'a> { /// Existing slot with equivalent key. Occupied(OccupiedEntry<'a>), /// Vacant slot (no equivalent key in the map). Vacant(VacantEntry<'a>), } /// A view into an occupied entry in a [`Mapping`]. It is part of the [`Entry`] /// enum. pub struct OccupiedEntry<'a> { occupied: indexmap::map::OccupiedEntry<'a, Value, Value>, } /// A view into a vacant entry in a [`Mapping`]. It is part of the [`Entry`] /// enum. pub struct VacantEntry<'a> { vacant: indexmap::map::VacantEntry<'a, Value, Value>, } impl<'a> Entry<'a> { /// Returns a reference to this entry's key. pub fn key(&self) -> &Value { match self { Entry::Vacant(e) => e.key(), Entry::Occupied(e) => e.key(), } } /// Ensures a value is in the entry by inserting the default if empty, and /// returns a mutable reference to the value in the entry. pub fn or_insert(self, default: Value) -> &'a mut Value { match self { Entry::Vacant(entry) => entry.insert(default), Entry::Occupied(entry) => entry.into_mut(), } } /// Ensures a value is in the entry by inserting the result of the default /// function if empty, and returns a mutable reference to the value in the /// entry. pub fn or_insert_with(self, default: F) -> &'a mut Value where F: FnOnce() -> Value, { match self { Entry::Vacant(entry) => entry.insert(default()), Entry::Occupied(entry) => entry.into_mut(), } } /// Provides in-place mutable access to an occupied entry before any /// potential inserts into the map. pub fn and_modify(self, f: F) -> Self where F: FnOnce(&mut Value), { match self { Entry::Occupied(mut entry) => { f(entry.get_mut()); Entry::Occupied(entry) } Entry::Vacant(entry) => Entry::Vacant(entry), } } } impl<'a> OccupiedEntry<'a> { /// Gets a reference to the key in the entry. #[inline] pub fn key(&self) -> &Value { self.occupied.key() } /// Gets a reference to the value in the entry. #[inline] pub fn get(&self) -> &Value { self.occupied.get() } /// Gets a mutable reference to the value in the entry. #[inline] pub fn get_mut(&mut self) -> &mut Value { self.occupied.get_mut() } /// Converts the entry into a mutable reference to its value. #[inline] pub fn into_mut(self) -> &'a mut Value { self.occupied.into_mut() } /// Sets the value of the entry with the `OccupiedEntry`'s key, and returns /// the entry's old value. #[inline] pub fn insert(&mut self, value: Value) -> Value { self.occupied.insert(value) } /// Takes the value of the entry out of the map, and returns it. #[inline] pub fn remove(self) -> Value { self.occupied.swap_remove() } } impl<'a> VacantEntry<'a> { /// Gets a reference to the key that would be used when inserting a value /// through the VacantEntry. #[inline] pub fn key(&self) -> &Value { self.vacant.key() } /// Sets the value of the entry with the VacantEntry's key, and returns a /// mutable reference to it. #[inline] pub fn insert(self, value: Value) -> &'a mut Value { self.vacant.insert(value) } } impl Serialize for Mapping { #[inline] fn serialize(&self, serializer: S) -> Result { use serde::ser::SerializeMap; let mut map_serializer = serializer.serialize_map(Some(self.len()))?; for (k, v) in self { map_serializer.serialize_entry(k, v)?; } map_serializer.end() } } impl<'de> Deserialize<'de> for Mapping { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { struct Visitor; impl<'de> serde::de::Visitor<'de> for Visitor { type Value = Mapping; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a YAML mapping") } #[inline] fn visit_unit(self) -> Result where E: serde::de::Error, { Ok(Mapping::new()) } #[inline] fn visit_map(self, mut visitor: V) -> Result where V: serde::de::MapAccess<'de>, { let mut values = Mapping::new(); while let Some((k, v)) = visitor.next_entry()? { values.insert(k, v); } Ok(values) } } deserializer.deserialize_map(Visitor) } }