use crate::Error; use serde::de::{Unexpected, Visitor}; use serde::{forward_to_deserialize_any, Deserialize, Deserializer, Serialize, Serializer}; use std::cmp::Ordering; use std::fmt::{self, Debug, Display}; use std::hash::{Hash, Hasher}; use std::i64; /// Represents a YAML number, whether integer or floating point. #[derive(Clone, PartialEq, PartialOrd)] pub struct Number { n: N, } // "N" is a prefix of "NegInt"... this is a false positive. // https://github.com/Manishearth/rust-clippy/issues/1241 #[allow(clippy::enum_variant_names)] #[derive(Copy, Clone, Debug)] enum N { PosInt(u64), /// Always less than zero. NegInt(i64), /// May be infinite or NaN. Float(f64), } impl Number { /// Returns true if the `Number` is an integer between `i64::MIN` and /// `i64::MAX`. /// /// For any Number on which `is_i64` returns true, `as_i64` is guaranteed to /// return the integer value. /// /// ``` /// # use std::i64; /// # /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// # /// let big = i64::MAX as u64 + 10; /// let v = yaml(r#" /// a: 64 /// b: 9223372036854775817 /// c: 256.0 /// "#); /// /// assert!(v["a"].is_i64()); /// /// // Greater than i64::MAX. /// assert!(!v["b"].is_i64()); /// /// // Numbers with a decimal point are not considered integers. /// assert!(!v["c"].is_i64()); /// ``` #[inline] #[allow(clippy::cast_sign_loss)] pub fn is_i64(&self) -> bool { match self.n { N::PosInt(v) => v <= i64::max_value() as u64, N::NegInt(_) => true, N::Float(_) => false, } } /// Returns true if the `Number` is an integer between zero and `u64::MAX`. /// /// For any Number on which `is_u64` returns true, `as_u64` is guaranteed to /// return the integer value. /// /// ``` /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// # /// let v = yaml(r#" /// a: 64 /// b: -64 /// c: 256.0 /// "#); /// /// assert!(v["a"].is_u64()); /// /// // Negative integer. /// assert!(!v["b"].is_u64()); /// /// // Numbers with a decimal point are not considered integers. /// assert!(!v["c"].is_u64()); /// ``` #[inline] pub fn is_u64(&self) -> bool { match self.n { N::PosInt(_) => true, N::NegInt(_) | N::Float(_) => false, } } /// Returns true if the `Number` can be represented by f64. /// /// For any Number on which `is_f64` returns true, `as_f64` is guaranteed to /// return the floating point value. /// /// Currently this function returns true if and only if both `is_i64` and /// `is_u64` return false but this is not a guarantee in the future. /// /// ``` /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// # /// let v = yaml(r#" /// --- /// a: 256.0 /// b: 64 /// c: -64 /// "#); /// /// assert!(v["a"].is_f64()); /// /// // Integers. /// assert!(!v["b"].is_f64()); /// assert!(!v["c"].is_f64()); /// ``` #[inline] pub fn is_f64(&self) -> bool { match self.n { N::Float(_) => true, N::PosInt(_) | N::NegInt(_) => false, } } /// If the `Number` is an integer, represent it as i64 if possible. Returns /// None otherwise. /// /// ``` /// # use std::i64; /// # /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// # /// let big = i64::MAX as u64 + 10; /// let v = yaml(r#" /// --- /// a: 64 /// b: 9223372036854775817 /// c: 256.0 /// "#); /// /// assert_eq!(v["a"].as_i64(), Some(64)); /// assert_eq!(v["b"].as_i64(), None); /// assert_eq!(v["c"].as_i64(), None); /// ``` #[inline] pub fn as_i64(&self) -> Option { match self.n { N::PosInt(n) => { if n <= i64::max_value() as u64 { Some(n as i64) } else { None } } N::NegInt(n) => Some(n), N::Float(_) => None, } } /// If the `Number` is an integer, represent it as u64 if possible. Returns /// None otherwise. /// /// ``` /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// # /// let v = yaml(r#" /// --- /// a: 64 /// b: -64 /// c: 256.0 /// "#); /// /// assert_eq!(v["a"].as_u64(), Some(64)); /// assert_eq!(v["b"].as_u64(), None); /// assert_eq!(v["c"].as_u64(), None); /// ``` #[inline] pub fn as_u64(&self) -> Option { match self.n { N::PosInt(n) => Some(n), N::NegInt(_) | N::Float(_) => None, } } /// Represents the number as f64 if possible. Returns None otherwise. /// /// ``` /// # /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// let v = yaml(r#" /// --- /// a: 256.0 /// b: 64 /// c: -64 /// "#); /// /// assert_eq!(v["a"].as_f64(), Some(256.0)); /// assert_eq!(v["b"].as_f64(), Some(64.0)); /// assert_eq!(v["c"].as_f64(), Some(-64.0)); /// ``` /// /// ``` /// # use std::f64; /// # fn yaml(i: &str) -> serde_yaml::Value { serde_yaml::from_str(i).unwrap() } /// assert_eq!(yaml(".inf").as_f64(), Some(f64::INFINITY)); /// assert_eq!(yaml("-.inf").as_f64(), Some(f64::NEG_INFINITY)); /// assert!(yaml(".nan").as_f64().unwrap().is_nan()); /// ``` #[inline] pub fn as_f64(&self) -> Option { match self.n { N::PosInt(n) => Some(n as f64), N::NegInt(n) => Some(n as f64), N::Float(n) => Some(n), } } /// Returns true if this value is NaN and false otherwise. /// /// ``` /// # use std::f64; /// # /// # use serde_yaml::Number; /// # /// assert!(!Number::from(256.0).is_nan()); /// /// assert!(Number::from(f64::NAN).is_nan()); /// /// assert!(!Number::from(f64::INFINITY).is_nan()); /// /// assert!(!Number::from(f64::NEG_INFINITY).is_nan()); /// /// assert!(!Number::from(1).is_nan()); /// ``` #[inline] pub fn is_nan(&self) -> bool { match self.n { N::PosInt(_) | N::NegInt(_) => false, N::Float(f) => f.is_nan(), } } /// Returns true if this value is positive infinity or negative infinity and /// false otherwise. /// /// ``` /// # use std::f64; /// # /// # use serde_yaml::Number; /// # /// assert!(!Number::from(256.0).is_infinite()); /// /// assert!(!Number::from(f64::NAN).is_infinite()); /// /// assert!(Number::from(f64::INFINITY).is_infinite()); /// /// assert!(Number::from(f64::NEG_INFINITY).is_infinite()); /// /// assert!(!Number::from(1).is_infinite()); /// ``` #[inline] pub fn is_infinite(&self) -> bool { match self.n { N::PosInt(_) | N::NegInt(_) => false, N::Float(f) => f.is_infinite(), } } /// Returns true if this number is neither infinite nor NaN. /// /// ``` /// # use std::f64; /// # /// # use serde_yaml::Number; /// # /// assert!(Number::from(256.0).is_finite()); /// /// assert!(!Number::from(f64::NAN).is_finite()); /// /// assert!(!Number::from(f64::INFINITY).is_finite()); /// /// assert!(!Number::from(f64::NEG_INFINITY).is_finite()); /// /// assert!(Number::from(1).is_finite()); /// ``` #[inline] pub fn is_finite(&self) -> bool { match self.n { N::PosInt(_) | N::NegInt(_) => true, N::Float(f) => f.is_finite(), } } } impl fmt::Display for Number { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { match self.n { N::PosInt(i) => Display::fmt(&i, formatter), N::NegInt(i) => Display::fmt(&i, formatter), N::Float(f) if f.is_nan() => formatter.write_str(".nan"), N::Float(f) if f.is_infinite() => { if f.is_sign_negative() { formatter.write_str("-.inf") } else { formatter.write_str(".inf") } } N::Float(f) => Display::fmt(&f, formatter), } } } impl Debug for Number { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.n, formatter) } } impl PartialEq for N { fn eq(&self, other: &N) -> bool { match (*self, *other) { (N::PosInt(a), N::PosInt(b)) => a == b, (N::NegInt(a), N::NegInt(b)) => a == b, (N::Float(a), N::Float(b)) => { if a.is_nan() && b.is_nan() { // YAML only has one NaN; // the bit representation isn't preserved true } else { a == b } } _ => false, } } } impl PartialOrd for N { fn partial_cmp(&self, other: &Self) -> Option { match (*self, *other) { (N::Float(a), N::Float(b)) => { if a.is_nan() && b.is_nan() { // YAML only has one NaN Some(Ordering::Equal) } else { a.partial_cmp(&b) } } _ => Some(self.total_cmp(other)), } } } impl N { fn total_cmp(&self, other: &Self) -> Ordering { match (*self, *other) { (N::PosInt(a), N::PosInt(b)) => a.cmp(&b), (N::NegInt(a), N::NegInt(b)) => a.cmp(&b), // negint is always less than zero (N::NegInt(_), N::PosInt(_)) => Ordering::Less, (N::PosInt(_), N::NegInt(_)) => Ordering::Greater, (N::Float(a), N::Float(b)) => a.partial_cmp(&b).unwrap_or_else(|| { // arbitrarily sort the NaN last if !a.is_nan() { Ordering::Less } else if !b.is_nan() { Ordering::Greater } else { Ordering::Equal } }), // arbitrarily sort integers below floats // FIXME: maybe something more sensible? (_, N::Float(_)) => Ordering::Less, (N::Float(_), _) => Ordering::Greater, } } } impl Number { pub(crate) fn total_cmp(&self, other: &Self) -> Ordering { self.n.total_cmp(&other.n) } } impl Serialize for Number { #[inline] fn serialize(&self, serializer: S) -> Result where S: Serializer, { match self.n { N::PosInt(i) => serializer.serialize_u64(i), N::NegInt(i) => serializer.serialize_i64(i), N::Float(f) => serializer.serialize_f64(f), } } } impl<'de> Deserialize<'de> for Number { #[inline] fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { struct NumberVisitor; impl<'de> Visitor<'de> for NumberVisitor { type Value = Number; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a number") } #[inline] fn visit_i64(self, value: i64) -> Result { Ok(value.into()) } #[inline] fn visit_u64(self, value: u64) -> Result { Ok(value.into()) } #[inline] fn visit_f64(self, value: f64) -> Result { Ok(value.into()) } } deserializer.deserialize_any(NumberVisitor) } } impl<'de> Deserializer<'de> for Number { type Error = Error; #[inline] fn deserialize_any(self, visitor: V) -> Result where V: Visitor<'de>, { match self.n { N::PosInt(i) => visitor.visit_u64(i), N::NegInt(i) => visitor.visit_i64(i), N::Float(f) => visitor.visit_f64(f), } } forward_to_deserialize_any! { bool i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str string bytes byte_buf option unit unit_struct newtype_struct seq tuple tuple_struct map struct enum identifier ignored_any } } impl<'de, 'a> Deserializer<'de> for &'a Number { type Error = Error; #[inline] fn deserialize_any(self, visitor: V) -> Result where V: Visitor<'de>, { match self.n { N::PosInt(i) => visitor.visit_u64(i), N::NegInt(i) => visitor.visit_i64(i), N::Float(f) => visitor.visit_f64(f), } } forward_to_deserialize_any! { bool i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str string bytes byte_buf option unit unit_struct newtype_struct seq tuple tuple_struct map struct enum identifier ignored_any } } macro_rules! from_signed { ($($signed_ty:ident)*) => { $( impl From<$signed_ty> for Number { #[inline] #[allow(clippy::cast_sign_loss)] fn from(i: $signed_ty) -> Self { if i < 0 { Number { n: N::NegInt(i as i64) } } else { Number { n: N::PosInt(i as u64) } } } } )* }; } macro_rules! from_unsigned { ($($unsigned_ty:ident)*) => { $( impl From<$unsigned_ty> for Number { #[inline] fn from(u: $unsigned_ty) -> Self { Number { n: N::PosInt(u as u64) } } } )* }; } macro_rules! from_float { ($($float_ty:ident)*) => { $( impl From<$float_ty> for Number { #[inline] fn from(f: $float_ty) -> Self { Number { n: N::Float(f as f64) } } } )* } } from_signed!(i8 i16 i32 i64 isize); from_unsigned!(u8 u16 u32 u64 usize); from_float!(f32 f64); // This is fine, because we don't _really_ implement hash for floats // all other hash functions should work as expected #[allow(clippy::derive_hash_xor_eq)] impl Hash for Number { fn hash(&self, state: &mut H) { match self.n { N::Float(_) => { // you should feel bad for using f64 as a map key 3.hash(state); } N::PosInt(u) => u.hash(state), N::NegInt(i) => i.hash(state), } } } pub(crate) fn unexpected(number: &Number) -> Unexpected { match number.n { N::PosInt(u) => Unexpected::Unsigned(u), N::NegInt(i) => Unexpected::Signed(i), N::Float(f) => Unexpected::Float(f), } }