1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
|
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil.h: Math and bit manipulation functions.
#ifndef COMMON_MATHUTIL_H_
#define COMMON_MATHUTIL_H_
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <limits>
#include <anglebase/numerics/safe_math.h>
#include "common/debug.h"
#include "common/platform.h"
namespace angle
{
using base::CheckedNumeric;
using base::IsValueInRangeForNumericType;
} // namespace angle
namespace gl
{
const unsigned int Float32One = 0x3F800000;
const unsigned short Float16One = 0x3C00;
template <typename T>
inline constexpr bool isPow2(T x)
{
static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
return (x & (x - 1)) == 0 && (x != 0);
}
template <typename T>
inline int log2(T x)
{
static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
int r = 0;
while ((x >> r) > 1)
r++;
return r;
}
inline unsigned int ceilPow2(unsigned int x)
{
if (x != 0)
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return x;
}
template <typename DestT, typename SrcT>
inline DestT clampCast(SrcT value)
{
// For floating-point types with denormalization, min returns the minimum positive normalized
// value. To find the value that has no values less than it, use numeric_limits::lowest.
constexpr const long double destLo =
static_cast<long double>(std::numeric_limits<DestT>::lowest());
constexpr const long double destHi =
static_cast<long double>(std::numeric_limits<DestT>::max());
constexpr const long double srcLo =
static_cast<long double>(std::numeric_limits<SrcT>::lowest());
constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
if (destHi < srcHi)
{
DestT destMax = std::numeric_limits<DestT>::max();
if (value >= static_cast<SrcT>(destMax))
{
return destMax;
}
}
if (destLo > srcLo)
{
DestT destLow = std::numeric_limits<DestT>::lowest();
if (value <= static_cast<SrcT>(destLow))
{
return destLow;
}
}
return static_cast<DestT>(value);
}
// Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
// value is casted to the source type.
template <>
inline unsigned int clampCast(bool value)
{
return static_cast<unsigned int>(value);
}
template <>
inline int clampCast(bool value)
{
return static_cast<int>(value);
}
template <typename T, typename MIN, typename MAX>
inline T clamp(T x, MIN min, MAX max)
{
// Since NaNs fail all comparison tests, a NaN value will default to min
return x > min ? (x > max ? max : x) : min;
}
template <typename T>
T clampForBitCount(T value, size_t bitCount)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
if (bitCount == 0)
{
constexpr T kZero = 0;
return kZero;
}
ASSERT(bitCount <= sizeof(T) * 8);
constexpr bool kIsSigned = std::numeric_limits<T>::is_signed;
ASSERT((bitCount > 1) || !kIsSigned);
T min = 0;
T max = 0;
if (bitCount == sizeof(T) * 8)
{
min = std::numeric_limits<T>::min();
max = std::numeric_limits<T>::max();
}
else
{
constexpr T kOne = 1;
min = (kIsSigned) ? -1 * (kOne << (bitCount - 1)) : 0;
max = (kIsSigned) ? (kOne << (bitCount - 1)) - 1 : (kOne << bitCount) - 1;
}
return gl::clamp(value, min, max);
}
inline float clamp01(float x)
{
return clamp(x, 0.0f, 1.0f);
}
template <const int n>
inline unsigned int unorm(float x)
{
const unsigned int max = 0xFFFFFFFF >> (32 - n);
if (x > 1)
{
return max;
}
else if (x < 0)
{
return 0;
}
else
{
return (unsigned int)(max * x + 0.5f);
}
}
inline bool supportsSSE2()
{
#if defined(ANGLE_USE_SSE)
static bool checked = false;
static bool supports = false;
if (checked)
{
return supports;
}
# if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
{
int info[4];
__cpuid(info, 0);
if (info[0] >= 1)
{
__cpuid(info, 1);
supports = (info[3] >> 26) & 1;
}
}
# endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
checked = true;
return supports;
#else // defined(ANGLE_USE_SSE)
return false;
#endif
}
template <typename destType, typename sourceType>
destType bitCast(const sourceType &source)
{
size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
destType output;
memcpy(&output, &source, copySize);
return output;
}
// https://stackoverflow.com/a/37581284
template <typename T>
static constexpr double normalize(T value)
{
return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
: static_cast<double>(value) / std::numeric_limits<T>::max();
}
inline unsigned short float32ToFloat16(float fp32)
{
unsigned int fp32i = bitCast<unsigned int>(fp32);
unsigned int sign = (fp32i & 0x80000000) >> 16;
unsigned int abs = fp32i & 0x7FFFFFFF;
if (abs > 0x7F800000)
{ // NaN
return 0x7FFF;
}
else if (abs > 0x47FFEFFF)
{ // Infinity
return static_cast<uint16_t>(sign | 0x7C00);
}
else if (abs < 0x38800000) // Denormal
{
unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
int e = 113 - (abs >> 23);
if (e < 24)
{
abs = mantissa >> e;
}
else
{
abs = 0;
}
return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
}
else
{
return static_cast<unsigned short>(
sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
}
}
float float16ToFloat32(unsigned short h);
unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
inline unsigned short float32ToFloat11(float fp32)
{
const unsigned int float32MantissaMask = 0x7FFFFF;
const unsigned int float32ExponentMask = 0x7F800000;
const unsigned int float32SignMask = 0x80000000;
const unsigned int float32ValueMask = ~float32SignMask;
const unsigned int float32ExponentFirstBit = 23;
const unsigned int float32ExponentBias = 127;
const unsigned short float11Max = 0x7BF;
const unsigned short float11MantissaMask = 0x3F;
const unsigned short float11ExponentMask = 0x7C0;
const unsigned short float11BitMask = 0x7FF;
const unsigned int float11ExponentBias = 14;
const unsigned int float32Maxfloat11 = 0x477E0000;
const unsigned int float32MinNormfloat11 = 0x38800000;
const unsigned int float32MinDenormfloat11 = 0x35000080;
const unsigned int float32Bits = bitCast<unsigned int>(fp32);
const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
unsigned int float32Val = float32Bits & float32ValueMask;
if ((float32Val & float32ExponentMask) == float32ExponentMask)
{
// INF or NAN
if ((float32Val & float32MantissaMask) != 0)
{
return float11ExponentMask |
(((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
float11MantissaMask);
}
else if (float32Sign)
{
// -INF is clamped to 0 since float11 is positive only
return 0;
}
else
{
return float11ExponentMask;
}
}
else if (float32Sign)
{
// float11 is positive only, so clamp to zero
return 0;
}
else if (float32Val > float32Maxfloat11)
{
// The number is too large to be represented as a float11, set to max
return float11Max;
}
else if (float32Val < float32MinDenormfloat11)
{
// The number is too small to be represented as a denormalized float11, set to 0
return 0;
}
else
{
if (float32Val < float32MinNormfloat11)
{
// The number is too small to be represented as a normalized float11
// Convert it to a denormalized value.
const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
(float32Val >> float32ExponentFirstBit);
ASSERT(shift < 32);
float32Val =
((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
}
else
{
// Rebias the exponent to represent the value as a normalized float11
float32Val += 0xC8000000;
}
return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
}
}
inline unsigned short float32ToFloat10(float fp32)
{
const unsigned int float32MantissaMask = 0x7FFFFF;
const unsigned int float32ExponentMask = 0x7F800000;
const unsigned int float32SignMask = 0x80000000;
const unsigned int float32ValueMask = ~float32SignMask;
const unsigned int float32ExponentFirstBit = 23;
const unsigned int float32ExponentBias = 127;
const unsigned short float10Max = 0x3DF;
const unsigned short float10MantissaMask = 0x1F;
const unsigned short float10ExponentMask = 0x3E0;
const unsigned short float10BitMask = 0x3FF;
const unsigned int float10ExponentBias = 14;
const unsigned int float32Maxfloat10 = 0x477C0000;
const unsigned int float32MinNormfloat10 = 0x38800000;
const unsigned int float32MinDenormfloat10 = 0x35800040;
const unsigned int float32Bits = bitCast<unsigned int>(fp32);
const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask;
unsigned int float32Val = float32Bits & float32ValueMask;
if ((float32Val & float32ExponentMask) == float32ExponentMask)
{
// INF or NAN
if ((float32Val & float32MantissaMask) != 0)
{
return float10ExponentMask |
(((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
float10MantissaMask);
}
else if (float32Sign)
{
// -INF is clamped to 0 since float10 is positive only
return 0;
}
else
{
return float10ExponentMask;
}
}
else if (float32Sign)
{
// float10 is positive only, so clamp to zero
return 0;
}
else if (float32Val > float32Maxfloat10)
{
// The number is too large to be represented as a float10, set to max
return float10Max;
}
else if (float32Val < float32MinDenormfloat10)
{
// The number is too small to be represented as a denormalized float10, set to 0
return 0;
}
else
{
if (float32Val < float32MinNormfloat10)
{
// The number is too small to be represented as a normalized float10
// Convert it to a denormalized value.
const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
(float32Val >> float32ExponentFirstBit);
ASSERT(shift < 32);
float32Val =
((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
}
else
{
// Rebias the exponent to represent the value as a normalized float10
float32Val += 0xC8000000;
}
return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
}
}
inline float float11ToFloat32(unsigned short fp11)
{
unsigned short exponent = (fp11 >> 6) & 0x1F;
unsigned short mantissa = fp11 & 0x3F;
if (exponent == 0x1F)
{
// INF or NAN
return bitCast<float>(0x7f800000 | (mantissa << 17));
}
else
{
if (exponent != 0)
{
// normalized
}
else if (mantissa != 0)
{
// The value is denormalized
exponent = 1;
do
{
exponent--;
mantissa <<= 1;
} while ((mantissa & 0x40) == 0);
mantissa = mantissa & 0x3F;
}
else // The value is zero
{
exponent = static_cast<unsigned short>(-112);
}
return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
}
}
inline float float10ToFloat32(unsigned short fp10)
{
unsigned short exponent = (fp10 >> 5) & 0x1F;
unsigned short mantissa = fp10 & 0x1F;
if (exponent == 0x1F)
{
// INF or NAN
return bitCast<float>(0x7f800000 | (mantissa << 17));
}
else
{
if (exponent != 0)
{
// normalized
}
else if (mantissa != 0)
{
// The value is denormalized
exponent = 1;
do
{
exponent--;
mantissa <<= 1;
} while ((mantissa & 0x20) == 0);
mantissa = mantissa & 0x1F;
}
else // The value is zero
{
exponent = static_cast<unsigned short>(-112);
}
return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
}
}
// Converts to and from float and 16.16 fixed point format.
inline float ConvertFixedToFloat(int32_t fixedInput)
{
return static_cast<float>(fixedInput) / 65536.0f;
}
inline uint32_t ConvertFloatToFixed(float floatInput)
{
static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
static constexpr uint32_t kLowest = static_cast<uint32_t>(-32768 * 65536 + 65535);
if (floatInput > 32767.65535)
{
return kHighest;
}
else if (floatInput < -32768.65535)
{
return kLowest;
}
else
{
return static_cast<uint32_t>(floatInput * 65536);
}
}
template <typename T>
inline float normalizedToFloat(T input)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
if (sizeof(T) > 2)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
return static_cast<float>(input * inverseMax);
}
else
{
constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
return input * inverseMax;
}
}
template <unsigned int inputBitCount, typename T>
inline float normalizedToFloat(T input)
{
static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
ASSERT((input & ~((1 << inputBitCount) - 1)) == 0);
if (inputBitCount > 23)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
return static_cast<float>(input * inverseMax);
}
else
{
constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
return input * inverseMax;
}
}
template <typename T>
inline T floatToNormalized(float input)
{
if constexpr (sizeof(T) > 2)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
}
else
{
return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
}
}
template <unsigned int outputBitCount, typename T>
inline T floatToNormalized(float input)
{
static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
if (outputBitCount > 23)
{
// float has only a 23 bit mantissa, so we need to do the calculation in double precision
return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
}
else
{
return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
}
}
template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
inline T getShiftedData(T input)
{
static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
"T must have at least as many bits as inputBitCount + inputBitStart.");
const T mask = (1 << inputBitCount) - 1;
return (input >> inputBitStart) & mask;
}
template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
inline T shiftData(T input)
{
static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
"T must have at least as many bits as inputBitCount + inputBitStart.");
const T mask = (1 << inputBitCount) - 1;
return (input & mask) << inputBitStart;
}
inline unsigned int CountLeadingZeros(uint32_t x)
{
// Use binary search to find the amount of leading zeros.
unsigned int zeros = 32u;
uint32_t y;
y = x >> 16u;
if (y != 0)
{
zeros = zeros - 16u;
x = y;
}
y = x >> 8u;
if (y != 0)
{
zeros = zeros - 8u;
x = y;
}
y = x >> 4u;
if (y != 0)
{
zeros = zeros - 4u;
x = y;
}
y = x >> 2u;
if (y != 0)
{
zeros = zeros - 2u;
x = y;
}
y = x >> 1u;
if (y != 0)
{
return zeros - 2u;
}
return zeros - x;
}
inline unsigned char average(unsigned char a, unsigned char b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed char average(signed char a, signed char b)
{
return ((short)a + (short)b) / 2;
}
inline unsigned short average(unsigned short a, unsigned short b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline signed short average(signed short a, signed short b)
{
return ((int)a + (int)b) / 2;
}
inline unsigned int average(unsigned int a, unsigned int b)
{
return ((a ^ b) >> 1) + (a & b);
}
inline int average(int a, int b)
{
long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2LL;
return static_cast<int>(average);
}
inline float average(float a, float b)
{
return (a + b) * 0.5f;
}
inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
{
return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
}
inline unsigned int averageFloat11(unsigned int a, unsigned int b)
{
return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
float11ToFloat32(static_cast<unsigned short>(b))) *
0.5f);
}
inline unsigned int averageFloat10(unsigned int a, unsigned int b)
{
return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
float10ToFloat32(static_cast<unsigned short>(b))) *
0.5f);
}
template <typename T>
class Range
{
public:
Range() {}
Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
T length() const { return (empty() ? 0 : (mHigh - mLow)); }
bool intersects(Range<T> other)
{
if (mLow <= other.mLow)
{
return other.mLow < mHigh;
}
else
{
return mLow < other.mHigh;
}
}
// Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
void extend(T value)
{
mLow = value < mLow ? value : mLow;
mHigh = value >= mHigh ? (value + 1) : mHigh;
}
bool empty() const { return mHigh <= mLow; }
bool contains(T value) const { return value >= mLow && value < mHigh; }
class Iterator final
{
public:
Iterator(T value) : mCurrent(value) {}
Iterator &operator++()
{
mCurrent++;
return *this;
}
bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
T operator*() const { return mCurrent; }
private:
T mCurrent;
};
Iterator begin() const { return Iterator(mLow); }
Iterator end() const { return Iterator(mHigh); }
T low() const { return mLow; }
T high() const { return mHigh; }
void invalidate()
{
mLow = std::numeric_limits<T>::max();
mHigh = std::numeric_limits<T>::min();
}
private:
T mLow;
T mHigh;
};
typedef Range<int> RangeI;
typedef Range<unsigned int> RangeUI;
struct IndexRange
{
struct Undefined
{};
IndexRange(Undefined) {}
IndexRange() : IndexRange(0, 0, 0) {}
IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
: start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
{
ASSERT(start <= end);
}
// Number of vertices in the range.
size_t vertexCount() const { return (end - start) + 1; }
// Inclusive range of indices that are not primitive restart
size_t start;
size_t end;
// Number of non-primitive restart indices
size_t vertexIndexCount;
};
// Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
// floating-point value. As in GLSL ldexp() built-in.
inline float Ldexp(float x, int exp)
{
if (exp > 128)
{
return std::numeric_limits<float>::infinity();
}
if (exp < -126)
{
return 0.0f;
}
double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
return static_cast<float>(result);
}
// First, both normalized floating-point values are converted into 16-bit integer values.
// Then, the results are packed into the returned 32-bit unsigned integer.
// The first float value will be written to the least significant bits of the output;
// the last float value will be written to the most significant bits.
// The conversion of each value to fixed point is done as follows :
// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
inline uint32_t packSnorm2x16(float f1, float f2)
{
int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
return static_cast<uint32_t>(mostSignificantBits) << 16 |
(static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
}
// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
// each component is converted to a normalized floating-point value to generate the returned two
// float values. The first float value will be extracted from the least significant bits of the
// input; the last float value will be extracted from the most-significant bits. The conversion for
// unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
// 32767.0, -1, +1)
inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
{
int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
int16_t mostSignificantBits = static_cast<int16_t>(u >> 16);
*f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
*f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
}
// First, both normalized floating-point values are converted into 16-bit integer values.
// Then, the results are packed into the returned 32-bit unsigned integer.
// The first float value will be written to the least significant bits of the output;
// the last float value will be written to the most significant bits.
// The conversion of each value to fixed point is done as follows:
// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
inline uint32_t packUnorm2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
return static_cast<uint32_t>(mostSignificantBits) << 16 |
static_cast<uint32_t>(leastSignificantBits);
}
// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
// each component is converted to a normalized floating-point value to generate the returned two
// float values. The first float value will be extracted from the least significant bits of the
// input; the last float value will be extracted from the most-significant bits. The conversion for
// unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
*f1 = static_cast<float>(leastSignificantBits) / 65535.0f;
*f2 = static_cast<float>(mostSignificantBits) / 65535.0f;
}
// Helper functions intended to be used only here.
namespace priv
{
inline uint8_t ToPackedUnorm8(float f)
{
return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
}
inline int8_t ToPackedSnorm8(float f)
{
return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
}
} // namespace priv
// Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
// similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
// unsigned integer starting from the least significant bits.
inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
{
uint8_t bits[4];
bits[0] = priv::ToPackedUnorm8(f1);
bits[1] = priv::ToPackedUnorm8(f2);
bits[2] = priv::ToPackedUnorm8(f3);
bits[3] = priv::ToPackedUnorm8(f4);
uint32_t result = 0u;
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
result |= (static_cast<uint32_t>(bits[i]) << shift);
}
return result;
}
// Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
// Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
// bits.
inline void UnpackUnorm4x8(uint32_t u, float *f)
{
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
f[i] = static_cast<float>(bits) / 255.0f;
}
}
// Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
// are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
// significant bits.
inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
{
int8_t bits[4];
bits[0] = priv::ToPackedSnorm8(f1);
bits[1] = priv::ToPackedSnorm8(f2);
bits[2] = priv::ToPackedSnorm8(f3);
bits[3] = priv::ToPackedSnorm8(f4);
uint32_t result = 0u;
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
}
return result;
}
// Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
// Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
// bits, and clamped to the range -1.0 to 1.0.
inline void UnpackSnorm4x8(uint32_t u, float *f)
{
for (int i = 0; i < 4; ++i)
{
int shift = i * 8;
int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
}
}
// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
// floating-point representation found in the OpenGL ES Specification, and then packing these
// two 16-bit integers into a 32-bit unsigned integer.
// f1: The 16 least-significant bits of the result;
// f2: The 16 most-significant bits.
inline uint32_t packHalf2x16(float f1, float f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2));
return static_cast<uint32_t>(mostSignificantBits) << 16 |
static_cast<uint32_t>(leastSignificantBits);
}
// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
// 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
// ES Specification, and converting them to 32-bit floating-point values. The first float value is
// obtained from the 16 least-significant bits of u; the second component is obtained from the 16
// most-significant bits of u.
inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
{
uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16);
*f1 = float16ToFloat32(leastSignificantBits);
*f2 = float16ToFloat32(mostSignificantBits);
}
inline uint8_t sRGBToLinear(uint8_t srgbValue)
{
float value = srgbValue / 255.0f;
if (value <= 0.04045f)
{
value = value / 12.92f;
}
else
{
value = std::pow((value + 0.055f) / 1.055f, 2.4f);
}
return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
}
inline uint8_t linearToSRGB(uint8_t linearValue)
{
float value = linearValue / 255.0f;
if (value <= 0.0f)
{
value = 0.0f;
}
else if (value < 0.0031308f)
{
value = value * 12.92f;
}
else if (value < 1.0f)
{
value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
}
else
{
value = 1.0f;
}
return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
}
// Reverse the order of the bits.
inline uint32_t BitfieldReverse(uint32_t value)
{
// TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
// for this, and right now it's not used in performance-critical paths.
uint32_t result = 0u;
for (size_t j = 0u; j < 32u; ++j)
{
result |= (((value >> j) & 1u) << (31u - j));
}
return result;
}
// Count the 1 bits.
#if defined(_MSC_VER) && !defined(__clang__)
# if defined(_M_IX86) || defined(_M_X64)
namespace priv
{
// Check POPCNT instruction support and cache the result.
// https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
static const bool kHasPopcnt = [] {
int info[4];
__cpuid(&info[0], 1);
return static_cast<bool>(info[2] & 0x800000);
}();
} // namespace priv
// Polyfills for x86/x64 CPUs without POPCNT.
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
inline int BitCountPolyfill(uint32_t bits)
{
bits = bits - ((bits >> 1) & 0x55555555);
bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
return static_cast<int>(bits);
}
inline int BitCountPolyfill(uint64_t bits)
{
bits = bits - ((bits >> 1) & 0x5555555555555555ull);
bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
return static_cast<int>(bits);
}
inline int BitCount(uint32_t bits)
{
if (priv::kHasPopcnt)
{
return static_cast<int>(__popcnt(bits));
}
return BitCountPolyfill(bits);
}
inline int BitCount(uint64_t bits)
{
if (priv::kHasPopcnt)
{
# if defined(_M_X64)
return static_cast<int>(__popcnt64(bits));
# else // x86
return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
__popcnt(static_cast<uint32_t>(bits)));
# endif // defined(_M_X64)
}
return BitCountPolyfill(bits);
}
# elif defined(_M_ARM) || defined(_M_ARM64)
// MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
// NEON instructions.
inline int BitCount(uint32_t bits)
{
// cast bits to 8x8 datatype and use VCNT on it
const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
// pairwise sums: 8x8 -> 16x4 -> 32x2
return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
}
inline int BitCount(uint64_t bits)
{
// cast bits to 8x8 datatype and use VCNT on it
const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
// pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
}
# endif // defined(_M_IX86) || defined(_M_X64)
#endif // defined(_MSC_VER) && !defined(__clang__)
#if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
inline int BitCount(uint32_t bits)
{
return __builtin_popcount(bits);
}
inline int BitCount(uint64_t bits)
{
return __builtin_popcountll(bits);
}
#endif // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
inline int BitCount(uint8_t bits)
{
return BitCount(static_cast<uint32_t>(bits));
}
inline int BitCount(uint16_t bits)
{
return BitCount(static_cast<uint32_t>(bits));
}
#if defined(ANGLE_PLATFORM_WINDOWS)
// Return the index of the least significant bit set. Indexing is such that bit 0 is the least
// significant bit. Implemented for different bit widths on different platforms.
inline unsigned long ScanForward(uint32_t bits)
{
ASSERT(bits != 0u);
unsigned long firstBitIndex = 0ul;
unsigned char ret = _BitScanForward(&firstBitIndex, bits);
ASSERT(ret != 0u);
return firstBitIndex;
}
inline unsigned long ScanForward(uint64_t bits)
{
ASSERT(bits != 0u);
unsigned long firstBitIndex = 0ul;
# if defined(ANGLE_IS_64_BIT_CPU)
unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
# else
unsigned char ret;
if (static_cast<uint32_t>(bits) == 0)
{
ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
firstBitIndex += 32ul;
}
else
{
ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
}
# endif // defined(ANGLE_IS_64_BIT_CPU)
ASSERT(ret != 0u);
return firstBitIndex;
}
// Return the index of the most significant bit set. Indexing is such that bit 0 is the least
// significant bit.
inline unsigned long ScanReverse(uint32_t bits)
{
ASSERT(bits != 0u);
unsigned long lastBitIndex = 0ul;
unsigned char ret = _BitScanReverse(&lastBitIndex, bits);
ASSERT(ret != 0u);
return lastBitIndex;
}
inline unsigned long ScanReverse(uint64_t bits)
{
ASSERT(bits != 0u);
unsigned long lastBitIndex = 0ul;
# if defined(ANGLE_IS_64_BIT_CPU)
unsigned char ret = _BitScanReverse64(&lastBitIndex, bits);
# else
unsigned char ret;
if (static_cast<uint32_t>(bits >> 32) == 0)
{
ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits));
}
else
{
ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits >> 32));
lastBitIndex += 32ul;
}
# endif // defined(ANGLE_IS_64_BIT_CPU)
ASSERT(ret != 0u);
return lastBitIndex;
}
#endif // defined(ANGLE_PLATFORM_WINDOWS)
#if defined(ANGLE_PLATFORM_POSIX)
inline unsigned long ScanForward(uint32_t bits)
{
ASSERT(bits != 0u);
return static_cast<unsigned long>(__builtin_ctz(bits));
}
inline unsigned long ScanForward(uint64_t bits)
{
ASSERT(bits != 0u);
# if defined(ANGLE_IS_64_BIT_CPU)
return static_cast<unsigned long>(__builtin_ctzll(bits));
# else
return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
: __builtin_ctz(static_cast<uint32_t>(bits)));
# endif // defined(ANGLE_IS_64_BIT_CPU)
}
inline unsigned long ScanReverse(uint32_t bits)
{
ASSERT(bits != 0u);
return static_cast<unsigned long>(sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(bits));
}
inline unsigned long ScanReverse(uint64_t bits)
{
ASSERT(bits != 0u);
# if defined(ANGLE_IS_64_BIT_CPU)
return static_cast<unsigned long>(sizeof(uint64_t) * CHAR_BIT - 1 - __builtin_clzll(bits));
# else
if (static_cast<uint32_t>(bits >> 32) == 0)
{
return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits));
}
else
{
return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits >> 32)) +
32;
}
# endif // defined(ANGLE_IS_64_BIT_CPU)
}
#endif // defined(ANGLE_PLATFORM_POSIX)
inline unsigned long ScanForward(uint8_t bits)
{
return ScanForward(static_cast<uint32_t>(bits));
}
inline unsigned long ScanForward(uint16_t bits)
{
return ScanForward(static_cast<uint32_t>(bits));
}
inline unsigned long ScanReverse(uint8_t bits)
{
return ScanReverse(static_cast<uint32_t>(bits));
}
inline unsigned long ScanReverse(uint16_t bits)
{
return ScanReverse(static_cast<uint32_t>(bits));
}
// Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
template <typename T>
int FindLSB(T bits)
{
static_assert(std::is_integral<T>::value, "must be integral type.");
if (bits == 0u)
{
return -1;
}
else
{
return static_cast<int>(ScanForward(bits));
}
}
// Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
template <typename T>
int FindMSB(T bits)
{
static_assert(std::is_integral<T>::value, "must be integral type.");
if (bits == 0u)
{
return -1;
}
else
{
return static_cast<int>(ScanReverse(bits));
}
}
// Returns whether the argument is Not a Number.
// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
// non-zero.
inline bool isNaN(float f)
{
// Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
// Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
(bitCast<uint32_t>(f) & 0x7fffffu);
}
// Returns whether the argument is infinity.
// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
// zero.
inline bool isInf(float f)
{
// Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
// Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
!(bitCast<uint32_t>(f) & 0x7fffffu);
}
namespace priv
{
template <unsigned int N, unsigned int R>
struct iSquareRoot
{
static constexpr unsigned int solve()
{
return (R * R > N)
? 0
: ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
}
enum Result
{
value = iSquareRoot::solve()
};
};
template <unsigned int N>
struct iSquareRoot<N, N>
{
enum result
{
value = N
};
};
} // namespace priv
template <unsigned int N>
constexpr unsigned int iSquareRoot()
{
return priv::iSquareRoot<N, 1>::value;
}
// Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
//
// Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
// behavior is undefined.
template <typename T>
inline T WrappingSum(T lhs, T rhs)
{
uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
return static_cast<T>(lhsUnsigned + rhsUnsigned);
}
template <typename T>
inline T WrappingDiff(T lhs, T rhs)
{
uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
return static_cast<T>(lhsUnsigned - rhsUnsigned);
}
inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
{
int64_t lhsWide = static_cast<int64_t>(lhs);
int64_t rhsWide = static_cast<int64_t>(rhs);
// The multiplication is guaranteed not to overflow.
int64_t resultWide = lhsWide * rhsWide;
// Implement the desired wrapping behavior by masking out the high-order 32 bits.
resultWide = resultWide & 0xffffffffLL;
// Casting to a narrower signed type is fine since the casted value is representable in the
// narrower type.
return static_cast<int32_t>(resultWide);
}
inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
{
return 2.0f * dimensionScreen / viewportDimension;
}
inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
{
float halfShifted = coordinateScreen / viewportDimension;
return 2.0f * (halfShifted - 0.5f);
}
} // namespace gl
namespace rx
{
template <typename T>
T roundUp(const T value, const T alignment)
{
auto temp = value + alignment - static_cast<T>(1);
return temp - temp % alignment;
}
template <typename T>
constexpr T roundUpPow2(const T value, const T alignment)
{
ASSERT(gl::isPow2(alignment));
return (value + alignment - 1) & ~(alignment - 1);
}
template <typename T>
constexpr T roundDownPow2(const T value, const T alignment)
{
ASSERT(gl::isPow2(alignment));
return value & ~(alignment - 1);
}
template <typename T>
angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
{
angle::CheckedNumeric<T> checkedValue(value);
angle::CheckedNumeric<T> checkedAlignment(alignment);
return roundUp(checkedValue, checkedAlignment);
}
inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
{
unsigned int divided = value / divisor;
return (divided + ((value % divisor == 0) ? 0 : 1));
}
#if defined(__has_builtin)
# define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
#else
# define ANGLE_HAS_BUILTIN(x) 0
#endif
#if defined(_MSC_VER)
# define ANGLE_ROTL(x, y) _rotl(x, y)
# define ANGLE_ROTL64(x, y) _rotl64(x, y)
# define ANGLE_ROTR16(x, y) _rotr16(x, y)
#elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
# define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
# define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
# define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
#else
inline uint32_t RotL(uint32_t x, int8_t r)
{
return (x << r) | (x >> (32 - r));
}
inline uint64_t RotL64(uint64_t x, int8_t r)
{
return (x << r) | (x >> (64 - r));
}
inline uint16_t RotR16(uint16_t x, int8_t r)
{
return (x >> r) | (x << (16 - r));
}
# define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
# define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
# define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
#endif // namespace rx
constexpr unsigned int Log2(unsigned int bytes)
{
return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
}
} // namespace rx
#endif // COMMON_MATHUTIL_H_
|