1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/base/SkCubics.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkTPin.h"
#include "src/base/SkQuads.h"
#include <algorithm>
#include <cmath>
static constexpr double PI = 3.141592653589793;
static bool nearly_equal(double x, double y) {
if (sk_double_nearly_zero(x)) {
return sk_double_nearly_zero(y);
}
return sk_doubles_nearly_equal_ulps(x, y);
}
// When the A coefficient of a cubic is close to 0, there can be floating point error
// that arises from computing a very large root. In those cases, we would rather be
// precise about the smaller 2 roots, so we have this arbitrary cutoff for when A is
// really small or small compared to B.
static bool close_to_a_quadratic(double A, double B) {
if (sk_double_nearly_zero(B)) {
return sk_double_nearly_zero(A);
}
return std::abs(A / B) < 1.0e-7;
}
int SkCubics::RootsReal(double A, double B, double C, double D, double solution[3]) {
if (close_to_a_quadratic(A, B)) {
return SkQuads::RootsReal(B, C, D, solution);
}
if (sk_double_nearly_zero(D)) { // 0 is one root
int num = SkQuads::RootsReal(A, B, C, solution);
for (int i = 0; i < num; ++i) {
if (sk_double_nearly_zero(solution[i])) {
return num;
}
}
solution[num++] = 0;
return num;
}
if (sk_double_nearly_zero(A + B + C + D)) { // 1 is one root
int num = SkQuads::RootsReal(A, A + B, -D, solution);
for (int i = 0; i < num; ++i) {
if (sk_doubles_nearly_equal_ulps(solution[i], 1)) {
return num;
}
}
solution[num++] = 1;
return num;
}
double a, b, c;
{
// If A is zero (e.g. B was nan and thus close_to_a_quadratic was false), we will
// temporarily have infinities rolling about, but will catch that when checking
// R2MinusQ3.
double invA = sk_ieee_double_divide(1, A);
a = B * invA;
b = C * invA;
c = D * invA;
}
double a2 = a * a;
double Q = (a2 - b * 3) / 9;
double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
double R2 = R * R;
double Q3 = Q * Q * Q;
double R2MinusQ3 = R2 - Q3;
// If one of R2 Q3 is infinite or nan, subtracting them will also be infinite/nan.
// If both are infinite or nan, the subtraction will be nan.
// In either case, we have no finite roots.
if (!std::isfinite(R2MinusQ3)) {
return 0;
}
double adiv3 = a / 3;
double r;
double* roots = solution;
if (R2MinusQ3 < 0) { // we have 3 real roots
// the divide/root can, due to finite precisions, be slightly outside of -1...1
const double theta = acos(SkTPin(R / std::sqrt(Q3), -1., 1.));
const double neg2RootQ = -2 * std::sqrt(Q);
r = neg2RootQ * cos(theta / 3) - adiv3;
*roots++ = r;
r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
if (!nearly_equal(solution[0], r)) {
*roots++ = r;
}
r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
if (!nearly_equal(solution[0], r) &&
(roots - solution == 1 || !nearly_equal(solution[1], r))) {
*roots++ = r;
}
} else { // we have 1 real root
const double sqrtR2MinusQ3 = std::sqrt(R2MinusQ3);
A = fabs(R) + sqrtR2MinusQ3;
A = std::cbrt(A); // cube root
if (R > 0) {
A = -A;
}
if (!sk_double_nearly_zero(A)) {
A += Q / A;
}
r = A - adiv3;
*roots++ = r;
if (!sk_double_nearly_zero(R2) &&
sk_doubles_nearly_equal_ulps(R2, Q3)) {
r = -A / 2 - adiv3;
if (!nearly_equal(solution[0], r)) {
*roots++ = r;
}
}
}
return static_cast<int>(roots - solution);
}
int SkCubics::RootsValidT(double A, double B, double C, double D,
double solution[3]) {
double allRoots[3] = {0, 0, 0};
int realRoots = SkCubics::RootsReal(A, B, C, D, allRoots);
int foundRoots = 0;
for (int index = 0; index < realRoots; ++index) {
double tValue = allRoots[index];
if (tValue >= 1.0 && tValue <= 1.00005) {
// Make sure we do not already have 1 (or something very close) in the list of roots.
if ((foundRoots < 1 || !sk_doubles_nearly_equal_ulps(solution[0], 1)) &&
(foundRoots < 2 || !sk_doubles_nearly_equal_ulps(solution[1], 1))) {
solution[foundRoots++] = 1;
}
} else if (tValue >= -0.00005 && (tValue <= 0.0 || sk_double_nearly_zero(tValue))) {
// Make sure we do not already have 0 (or something very close) in the list of roots.
if ((foundRoots < 1 || !sk_double_nearly_zero(solution[0])) &&
(foundRoots < 2 || !sk_double_nearly_zero(solution[1]))) {
solution[foundRoots++] = 0;
}
} else if (tValue > 0.0 && tValue < 1.0) {
solution[foundRoots++] = tValue;
}
}
return foundRoots;
}
static bool approximately_zero(double x) {
// This cutoff for our binary search hopefully strikes a good balance between
// performance and accuracy.
return std::abs(x) < 0.00000001;
}
static int find_extrema_valid_t(double A, double B, double C,
double t[2]) {
// To find the local min and max of a cubic, we take the derivative and
// solve when that is equal to 0.
// d/dt (A*t^3 + B*t^2 + C*t + D) = 3A*t^2 + 2B*t + C
double roots[2] = {0, 0};
int numRoots = SkQuads::RootsReal(3*A, 2*B, C, roots);
int validRoots = 0;
for (int i = 0; i < numRoots; i++) {
double tValue = roots[i];
if (tValue >= 0 && tValue <= 1.0) {
t[validRoots++] = tValue;
}
}
return validRoots;
}
static double binary_search(double A, double B, double C, double D, double start, double stop) {
SkASSERT(start <= stop);
double left = SkCubics::EvalAt(A, B, C, D, start);
if (approximately_zero(left)) {
return start;
}
double right = SkCubics::EvalAt(A, B, C, D, stop);
if (!std::isfinite(left) || !std::isfinite(right)) {
return -1; // Not going to deal with one or more endpoints being non-finite.
}
if ((left > 0 && right > 0) || (left < 0 && right < 0)) {
return -1; // We can only have a root if one is above 0 and the other is below 0.
}
constexpr int maxIterations = 1000; // prevent infinite loop
for (int i = 0; i < maxIterations; i++) {
double step = (start + stop) / 2;
double curr = SkCubics::EvalAt(A, B, C, D, step);
if (approximately_zero(curr)) {
return step;
}
if ((curr < 0 && left < 0) || (curr > 0 && left > 0)) {
// go right
start = step;
} else {
// go left
stop = step;
}
}
return -1;
}
int SkCubics::BinarySearchRootsValidT(double A, double B, double C, double D,
double solution[3]) {
if (!std::isfinite(A) || !std::isfinite(B) || !std::isfinite(C) || !std::isfinite(D)) {
return 0;
}
double regions[4] = {0, 0, 0, 1};
// Find local minima and maxima
double minMax[2] = {0, 0};
int extremaCount = find_extrema_valid_t(A, B, C, minMax);
int startIndex = 2 - extremaCount;
if (extremaCount == 1) {
regions[startIndex + 1] = minMax[0];
}
if (extremaCount == 2) {
// While the roots will be in the range 0 to 1 inclusive, they might not be sorted.
regions[startIndex + 1] = std::min(minMax[0], minMax[1]);
regions[startIndex + 2] = std::max(minMax[0], minMax[1]);
}
// Starting at regions[startIndex] and going up through regions[3], we have
// an ascending list of numbers in the range 0 to 1.0, between which are the possible
// locations of a root.
int foundRoots = 0;
for (;startIndex < 3; startIndex++) {
double root = binary_search(A, B, C, D, regions[startIndex], regions[startIndex + 1]);
if (root >= 0) {
// Check for duplicates
if ((foundRoots < 1 || !approximately_zero(solution[0] - root)) &&
(foundRoots < 2 || !approximately_zero(solution[1] - root))) {
solution[foundRoots++] = root;
}
}
}
return foundRoots;
}
|